|
|
A216208
|
|
a(1) = 11. a(n) is obtained by filling the space between neighboring entries by the sum of the first two entries of a(n-1).
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Definition of "entry": Call each digit of a(1) and each inserted sum an entry.
(1) Philosophy. Sequence expresses the nesting pattern of hierarchical higher-order vagueness (formal description in Bobzien 2013, 17-20; informal description e.g. in Shapiro 2005, 147-8) (2) Biology. At least the first five numbers of the sequence are manifested in various biological structures, so in vessel arrangement in Microcosmus helleri; in the pereional appendages of Augustidontus seriatus, in the rip structure (“Berippung”) of pecten (velopecten) Vewzprimiensis Bittn.(formal description in Salson 2010, 115).
|
|
REFERENCES
|
S. Bobzien, Higher-order vagueness and borderline nestings - a persistent confusion, Analytic Philosophy 54 (2013), 1-49.
M. Salson, Structures d'indexation compressées et dynamiques pour le texte (doctoral dissertation, bioinformatics) Université de Rouen 2010.
|
|
LINKS
|
Table of n, a(n) for n=1..7.
|
|
FORMULA
|
a(1) = 11. a(n) is obtained by filling the space between neighboring entries by the sum of the first two entries of a(n-1).
|
|
EXAMPLE
|
a(2) = 121; for a(3), in 1-2-1 the two (-) are replaced by 1+2 = 3 hence a(3) = 13231.
|
|
MATHEMATICA
|
a[1]="11"; a[n_] := a[n] = StringInsert[a[n-1], ToString@n, 1 + Range[2^(n-1)]]; Table[a[n], {n, 9}] (* Giovanni Resta, Mar 12 2013 *)
|
|
CROSSREFS
|
Sequence in context: A080486 A342233 A082776 * A110398 A176595 A067218
Adjacent sequences: A216205 A216206 A216207 * A216209 A216210 A216211
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Susanne Bobzien, Mar 12 2013
|
|
STATUS
|
approved
|
|
|
|