login
A342233
a(1) = 1, a(n) = smallest palindromic nontrivial multiple of a(n-1) containing all decimal digits of a(n-1).
1
1, 11, 121, 12221, 2102012, 21022222012, 2102243223422012, 2102245325665235422012, 210224532568625787526865235422012
OFFSET
1,2
COMMENTS
Differs from A082776 at a(5). a(n) <= (10^A055642(a(n-1))+1)*a(n-1). If a(n-1) > 10 and the last digit of a(n-1) <= 4, then a(n) <= (10^(A055642(a(n-1))-1)+1)*a(n-1).
EXAMPLE
a(3) = 121 is a palindromic multiple of a(2) = 11 and contains two '1', all the digits of a(2).
CROSSREFS
Sequence in context: A263608 A088760 A080486 * A082776 A216208 A110398
KEYWORD
nonn,base,more
AUTHOR
Chai Wah Wu, Mar 06 2021
EXTENSIONS
a(9) from Martin Ehrenstein, Mar 07 2021
a(9) corrected by Chai Wah Wu, Mar 08 2021
STATUS
approved