login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062510
a(n) = 2^n + (-1)^(n+1).
35
0, 3, 3, 9, 15, 33, 63, 129, 255, 513, 1023, 2049, 4095, 8193, 16383, 32769, 65535, 131073, 262143, 524289, 1048575, 2097153, 4194303, 8388609, 16777215, 33554433, 67108863, 134217729, 268435455, 536870913, 1073741823, 2147483649
OFFSET
0,2
COMMENTS
The identity 2 = 2^2/3 + 2^3/(3*3) - 2^4/(3*3*9) - 2^5/(3*3*9*15) + + - - can be viewed as a generalized Engel-type expansion of the number 2 to the base 2. Compare with A014551. - Peter Bala, Nov 13 2013
REFERENCES
D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 29.
LINKS
G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002.
FORMULA
a(n) = 3*A001045(n). - Paul Curtz, Jan 17 2008
G.f.: 3*x / ( (1+x)*(1-2*x) )
G.f.: Q(0) where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Apr 13 2013
E.g.f.: (exp(3*x) - 1)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016
MATHEMATICA
LinearRecurrence[{1, 2}, {0, 3}, 30] (* or *) Table[2^n - (-1)^n, {n, 0, 30}] (* G. C. Greubel, Jan 15 2018 *)
PROG
(PARI) for(n=0, 22, print(2^n+(-1)^(n+1)))
(Magma) [2^n + (-1)^(n+1): n in [0..40]]; // Vincenzo Librandi, Aug 14 2011
CROSSREFS
Sequence in context: A233026 A105423 A147471 * A000200 A100744 A331519
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 24 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001
STATUS
approved