OFFSET
0,2
COMMENTS
The identity 2 = 2^2/3 + 2^3/(3*3) - 2^4/(3*3*9) - 2^5/(3*3*9*15) + + - - can be viewed as a generalized Engel-type expansion of the number 2 to the base 2. Compare with A014551. - Peter Bala, Nov 13 2013
REFERENCES
D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 29.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002.
Index entries for linear recurrences with constant coefficients, signature (1,2).
FORMULA
a(n) = 3*A001045(n). - Paul Curtz, Jan 17 2008
G.f.: 3*x / ( (1+x)*(1-2*x) )
G.f.: Q(0) where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Apr 13 2013
E.g.f.: (exp(3*x) - 1)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016
MATHEMATICA
LinearRecurrence[{1, 2}, {0, 3}, 30] (* or *) Table[2^n - (-1)^n, {n, 0, 30}] (* G. C. Greubel, Jan 15 2018 *)
PROG
(PARI) for(n=0, 22, print(2^n+(-1)^(n+1)))
(Magma) [2^n + (-1)^(n+1): n in [0..40]]; // Vincenzo Librandi, Aug 14 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 24 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001
STATUS
approved