login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062510 a(n) = 2^n + (-1)^(n+1). 29
0, 3, 3, 9, 15, 33, 63, 129, 255, 513, 1023, 2049, 4095, 8193, 16383, 32769, 65535, 131073, 262143, 524289, 1048575, 2097153, 4194303, 8388609, 16777215, 33554433, 67108863, 134217729, 268435455, 536870913, 1073741823, 2147483649 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The identity 2 = 2^2/3 + 2^3/(3*3) - 2^4/(3*3*9) - 2^5/(3*3*9*15) + + - - can be viewed as a generalized Engel-type expansion of the number 2 to the base 2. Compare with A014551. - Peter Bala, Nov 13 2013

REFERENCES

D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 29.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002.

Index entries for linear recurrences with constant coefficients, signature (1,2).

FORMULA

a(n) = 3*A001045(n). - Paul Curtz, Jan 17 2008

G.f.: 3*x / ( (1+x)*(1-2*x) )

G.f.: Q(0) where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Apr 13 2013

E.g.f.: (exp(3*x) - 1)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016

MATHEMATICA

LinearRecurrence[{1, 2}, {0, 3}, 30] (* or *) Table[2^n - (-1)^n, {n, 0, 30}] (* G. C. Greubel, Jan 15 2018 *)

PROG

(PARI) for(n=0, 22, print(2^n+(-1)^(n+1)))

(MAGMA) [2^n + (-1)^(n+1): n in [0..40]]; // Vincenzo Librandi, Aug 14 2011

CROSSREFS

Cf. A102345, A105723.

Sequence in context: A233026 A105423 A147471 * A000200 A100744 A285883

Adjacent sequences:  A062507 A062508 A062509 * A062511 A062512 A062513

KEYWORD

easy,nonn

AUTHOR

Jason Earls, Jun 24 2001

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 00:41 EST 2019. Contains 329816 sequences. (Running on oeis4.)