login
A283836
Number of length-n binary vectors beginning with 0, ending with 1, and avoiding 6 consecutive 0's and 6 consecutive 1's.
2
1, 0, 1, 2, 4, 8, 16, 30, 60, 118, 232, 456, 897, 1762, 3465, 6812, 13392, 26328, 51760, 101756, 200048, 393284, 773176, 1520024, 2988289, 5874820, 11549593, 22705902, 44638628, 87757232, 172526176, 339177530, 666805468, 1310905034, 2577171440, 5066585648
OFFSET
0,4
LINKS
Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].
FORMULA
G.f.: -1/((x+1)*(x^2+x+1)*(x^2-x+1)*(x^5+x^4+x^3+x^2+x-1)). - Alois P. Heinz, Mar 25 2017
MATHEMATICA
CoefficientList[Series[-1/((x + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^5 + x^4 + x^3 + x^2 + x - 1)), {x, 0, 50}], x] (* Indranil Ghosh, Mar 26 2017 *)
PROG
(PARI) Vec(-1/((x + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^5 + x^4 + x^3 + x^2 + x - 1)) + O(x^50)) \\ Indranil Ghosh, Mar 26 2017
CROSSREFS
Sequence in context: A213368 A216212 A164263 * A244825 A220843 A277751
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 25 2017
EXTENSIONS
More terms from Alois P. Heinz, Mar 25 2017
STATUS
approved