login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283836
Number of length-n binary vectors beginning with 0, ending with 1, and avoiding 6 consecutive 0's and 6 consecutive 1's.
2
1, 0, 1, 2, 4, 8, 16, 30, 60, 118, 232, 456, 897, 1762, 3465, 6812, 13392, 26328, 51760, 101756, 200048, 393284, 773176, 1520024, 2988289, 5874820, 11549593, 22705902, 44638628, 87757232, 172526176, 339177530, 666805468, 1310905034, 2577171440, 5066585648
OFFSET
0,4
LINKS
Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].
FORMULA
G.f.: -1/((x+1)*(x^2+x+1)*(x^2-x+1)*(x^5+x^4+x^3+x^2+x-1)). - Alois P. Heinz, Mar 25 2017
MATHEMATICA
CoefficientList[Series[-1/((x + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^5 + x^4 + x^3 + x^2 + x - 1)), {x, 0, 50}], x] (* Indranil Ghosh, Mar 26 2017 *)
PROG
(PARI) Vec(-1/((x + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^5 + x^4 + x^3 + x^2 + x - 1)) + O(x^50)) \\ Indranil Ghosh, Mar 26 2017
CROSSREFS
Sequence in context: A213368 A216212 A164263 * A244825 A220843 A277751
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 25 2017
EXTENSIONS
More terms from Alois P. Heinz, Mar 25 2017
STATUS
approved