login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283839
Row sums of A283838.
2
1, 3, 6, 12, 24, 42, 76, 136, 240, 424, 753, 1337, 2388, 4280, 7706, 13940, 25332, 46224, 84696, 155786, 287574, 532624, 989554, 1843744, 3444389, 6450369, 12107004, 22771642, 42913116, 81014528, 153199818, 290152952, 550332614, 1045234672, 1987731140
OFFSET
8,2
COMMENTS
a(n) is odd for n >= 8 and n in { A247375 }. - Alois P. Heinz, Mar 26 2017
LINKS
Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785, 2016
MAPLE
b:= proc(n, l, c, k) option remember; `if`(n=0, l,
b(n-1, 1-l, 1, k)+`if`(c=k-1, 0, b(n-1, l, c+1, k)))
end:
a:= proc(n) option remember; `if`(n<8, 0, a(n-1)+
add(b(n-2*k-1, 0, 1, k), k=3..floor(n/2)-1))
end:
seq(a(n), n=8..60); # Alois P. Heinz, Mar 26 2017
MATHEMATICA
nMax = 60; gf[k_] := gf[k] = x^(2k)(x-x^k)^2 / ((1-x)(1-x^k)(1-2x+x^k)) + O[x]^(nMax+1); a[n_] := Sum[SeriesCoefficient[gf[k], n], {k, 3, Floor[ n/2] - 1}]; Table[a[n], {n, 8, nMax}] (* Jean-François Alcover, Apr 05 2017 *)
CROSSREFS
Sequence in context: A330132 A039695 A079079 * A336758 A364497 A132974
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 25 2017
EXTENSIONS
More terms from Alois P. Heinz, Mar 26 2017
STATUS
approved