login
A283839
Row sums of A283838.
2
1, 3, 6, 12, 24, 42, 76, 136, 240, 424, 753, 1337, 2388, 4280, 7706, 13940, 25332, 46224, 84696, 155786, 287574, 532624, 989554, 1843744, 3444389, 6450369, 12107004, 22771642, 42913116, 81014528, 153199818, 290152952, 550332614, 1045234672, 1987731140
OFFSET
8,2
COMMENTS
a(n) is odd for n >= 8 and n in { A247375 }. - Alois P. Heinz, Mar 26 2017
LINKS
Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785, 2016
MAPLE
b:= proc(n, l, c, k) option remember; `if`(n=0, l,
b(n-1, 1-l, 1, k)+`if`(c=k-1, 0, b(n-1, l, c+1, k)))
end:
a:= proc(n) option remember; `if`(n<8, 0, a(n-1)+
add(b(n-2*k-1, 0, 1, k), k=3..floor(n/2)-1))
end:
seq(a(n), n=8..60); # Alois P. Heinz, Mar 26 2017
MATHEMATICA
nMax = 60; gf[k_] := gf[k] = x^(2k)(x-x^k)^2 / ((1-x)(1-x^k)(1-2x+x^k)) + O[x]^(nMax+1); a[n_] := Sum[SeriesCoefficient[gf[k], n], {k, 3, Floor[ n/2] - 1}]; Table[a[n], {n, 8, nMax}] (* Jean-François Alcover, Apr 05 2017 *)
CROSSREFS
Sequence in context: A330132 A039695 A079079 * A336758 A364497 A132974
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 25 2017
EXTENSIONS
More terms from Alois P. Heinz, Mar 26 2017
STATUS
approved