login
A283837
Number of length-n binary vectors beginning with 0, ending with 1, and avoiding 7 consecutive 0's and 7 consecutive 1's.
3
1, 0, 1, 2, 4, 8, 16, 32, 62, 124, 246, 488, 968, 1920, 3809, 7554, 14985, 29724, 58960, 116952, 231984, 460160, 912764, 1810544, 3591364, 7123768, 14130584, 28029184, 55598209, 110283652, 218756761, 433922158, 860720548, 1707310512, 3386591840, 6717585472
OFFSET
0,4
LINKS
Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].
FORMULA
G.f.: -1/((x^6+x^5+x^4+x^3+x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x-1)). - Alois P. Heinz, Mar 25 2017
MATHEMATICA
CoefficientList[Series[-1/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^6 + x^5 + x^4 + x^3 + x^2 + x - 1)), {x, 0, 50}], x] (* Indranil Ghosh, Mar 26 2017 *)
PROG
(PARI) Vec(-1/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^6 + x^5 + x^4 + x^3 + x^2 + x - 1)) + O(x^50)) \\ Indranil Ghosh, Mar 26 2017
CROSSREFS
Sequence in context: A027560 A135493 A216241 * A111663 A054043 A052396
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 25 2017
EXTENSIONS
More terms from Alois P. Heinz, Mar 25 2017
STATUS
approved