login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of length-n binary vectors beginning with 0, ending with 1, and avoiding 6 consecutive 0's and 6 consecutive 1's.
2

%I #17 Mar 26 2017 11:43:24

%S 1,0,1,2,4,8,16,30,60,118,232,456,897,1762,3465,6812,13392,26328,

%T 51760,101756,200048,393284,773176,1520024,2988289,5874820,11549593,

%U 22705902,44638628,87757232,172526176,339177530,666805468,1310905034,2577171440,5066585648

%N Number of length-n binary vectors beginning with 0, ending with 1, and avoiding 6 consecutive 0's and 6 consecutive 1's.

%H Alois P. Heinz, <a href="/A283836/b283836.txt">Table of n, a(n) for n = 0..1000</a>

%H Stefano Bilotta, <a href="http://arxiv.org/abs/1605.03785">Variable-length Non-overlapping Codes</a>, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].

%F G.f.: -1/((x+1)*(x^2+x+1)*(x^2-x+1)*(x^5+x^4+x^3+x^2+x-1)). - _Alois P. Heinz_, Mar 25 2017

%t CoefficientList[Series[-1/((x + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^5 + x^4 + x^3 + x^2 + x - 1)), {x, 0, 50}], x] (* _Indranil Ghosh_, Mar 26 2017 *)

%o (PARI) Vec(-1/((x + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^5 + x^4 + x^3 + x^2 + x - 1)) + O(x^50)) \\ _Indranil Ghosh_, Mar 26 2017

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_, Mar 25 2017

%E More terms from _Alois P. Heinz_, Mar 25 2017