The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068912 Number of n step walks (each step +/-1 starting from 0) which are never more than 3 or less than -3. 6
 1, 2, 4, 8, 14, 28, 48, 96, 164, 328, 560, 1120, 1912, 3824, 6528, 13056, 22288, 44576, 76096, 152192, 259808, 519616, 887040, 1774080, 3028544, 6057088, 10340096, 20680192, 35303296, 70606592, 120532992, 241065984, 411525376, 823050752, 1405035520, 2810071040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The number of n step walks (each step +/-1 starting from 0) which are never more than k or less than -k is given by a(n,k) = 2^n/(k+1)*Sum_{r=1..k+1} (-1)^r*cos((Pi*(2*r-1))/(2*(k+1)))^n*cot((Pi*(1-2*r))/(4*(k+1))). Here we have k=3. - Herbert Kociemba, Sep 19 2020 LINKS Table of n, a(n) for n=0..35. T. Mansour and A. O. Munagi, Alternating subsets modulo m, Rocky Mt. J. Math. 42, No. 4, 1313-1325 (2012), Table 1 q=(0,1,1,1). Index entries for linear recurrences with constant coefficients, signature (0,4,0,-2). FORMULA G.f.: (1+2*x)/(1-4*x^2+2*x^4). a(n) = A068913(3, n). a(n) = 4*a(n-2) - 2*a(n-4). a(2*n) = A007070(n) = 2*a(2*n-1)-A060995(n); a(2*n+1) = 2*a(2*n). a(n) = (2^n/4)*Sum_{r=1..4} (-1)^r*cos((Pi*(2*r-1))/8)^n*cot((Pi*(1-2*r))/16). - Herbert Kociemba, Sep 19 2020 Conjecture: a(n) = floor((1+r)^(n/2)*(r+(2*(1+r))^(1/2)+(-1)^n*(r-(2*(1+r))^(1/2)))/4) where r = 1 + 2^(1/2). - Peter Luschny, Sep 20 2020 From Herbert Kociemba, Sep 20 2020: (Start) With the standard procedure to obtain an explicit formula for a(n) for a linear recurrence and r1=2-sqrt(2) and r2=2+sqrt(2) we get a(n) = a1(n) + a2(n) with a1(n) = -(r1^(n/2)*(-2*(-1+(-1)^n)*sqrt(r1)+(1+(-1)^n)*r1))/(4*sqrt(2)) and a2(n) = +(r2^(n/2)*(-2*(-1+(-1)^n)*sqrt(r2)+(1+(-1)^n)*r2))/(4*sqrt(2)). We have -1 (1+r)^(n/2)*(r+(2*(1+r))^(1/2)+(-1)^n*(r-(2*(1+r))^(1/2))): b := n -> (1+s)^(n/2)*(s-(2*(1+s))^(1/2)+(-1)^n*(s+(2*(1+s))^(1/2))): a := n -> (c(n) + b(n))/4: # Alternatively: a := proc(n) local h; h := n -> add((1+x)*(2+x)^(n/2), x=[sqrt(2), -sqrt(2)]); if n::even then h(n)/2 else h(n-1) fi end: seq(simplify(a(n)), n=0..30); # (End) MATHEMATICA nn=33; CoefficientList[Series[s+a + b + c + d + e +f/.Solve[{s ==1 + x a + x b, a==x s + x c, b==x s +x d, c==x a +x e, d== x b + x f, e==x c, f==x d, z==x e + x f }, {s, a, b, c, d, e, f, z}], {x, 0, nn}], x] (* Geoffrey Critzer, Jan 13 2014 *) a[n_, k_]:=2^n /(k+1) Sum[(-1)^r Cos[(Pi (2r-1))/(2 (k+1))]^n Cot[(Pi (1-2r))/(4 (k+1))] , {r, 1, k+1}] Table[a[n, 3], {n, 0, 40}]//Round (* Herbert Kociemba, Sep 19 2020 *) a[n_]:=Module[{r=2+Sqrt[2]}, Floor[(r^(n/2) (-2 (-1+(-1)^n) Sqrt[r]+(1+(-1)^n) r))/(4 Sqrt[2])]] Table[a[n], {n, 0, 40}] (* Herbert Kociemba, Sep 21 2020 *) CROSSREFS Cf. A000007, A016116 (without initial term), A068911, A068913 for similar. Sequence in context: A196721 A118034 A096590 * A164176 A325860 A217932 Adjacent sequences: A068909 A068910 A068911 * A068913 A068914 A068915 KEYWORD nonn,walk,easy AUTHOR Henry Bottomley, Mar 06 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 14:34 EDT 2024. Contains 372968 sequences. (Running on oeis4.)