Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 23 2020 04:00:26
%S 1,1,2,2,6,10,42,42,82,204,1196,1556,10324,34668,104948,104964,873540,
%T 1309396,11855027,25238220,91193575,453628255,5002616219,5902762219,
%U 21142729523,122981607092,189706055368,547296181656,7291700021313,14330422534833,202498591157970
%N Number of ways to write n! as product of squarefree numbers.
%C a(n) = A050320(A000142(n)).
%C From _Gus Wiseman_, Aug 20 2020: (Start)
%C Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of n!. For example, The a(2) = 1 through a(6) = 10 set multipartitions are:
%C {1} {12} {1}{1}{12} {1}{1}{123} {1}{1}{12}{123}
%C {1}{2} {1}{1}{1}{2} {1}{12}{13} {1}{12}{12}{13}
%C {1}{1}{1}{23} {1}{1}{1}{12}{23}
%C {1}{1}{2}{13} {1}{1}{1}{2}{123}
%C {1}{1}{3}{12} {1}{1}{2}{12}{13}
%C {1}{1}{1}{2}{3} {1}{1}{3}{12}{12}
%C {1}{1}{1}{1}{2}{23}
%C {1}{1}{1}{2}{2}{13}
%C {1}{1}{1}{2}{3}{12}
%C {1}{1}{1}{1}{2}{2}{3}
%C (End)
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>.
%e n=5, 5! = 1*2*3*4*5 = 120 = 2 * 2 * 2 * 3 * 5: a(5)=#{2*2*2*3*5,2*2*2*15,2*2*6*5,2*2*30,2*2*3*10,2*6*10}=6.
%t sub[w_, e_] := Block[{v=w}, v[[e]]--; v]; ric[w_, k_] := ric[w, k] = If[Max[w] == 0, 1, Block[{e, s, p = Flatten@ Position[Sign@w, 1]}, s = Select[ Prepend[#, First@p] & /@ Subsets[Rest@p], Total[1/2^#] <= k &]; Sum[ric[sub[w, e], Total[1/2^e]], {e, s}]]]; a[n_] := ric[ Sort[ Last /@ FactorInteger[n!]], 1]; Array[a, 22] (* _Giovanni Resta_, Sep 30 2019 *)
%Y A103775 is the strict case.
%Y A157612 is the case of superprimorials.
%Y A001055 counts factorizations.
%Y A045778 counts strict factorizations.
%Y A048656 counts squarefree divisors of factorials.
%Y A050320 counts factorizations into squarefree numbers.
%Y A050326 counts strict factorizations into squarefree numbers.
%Y A076716 counts factorizations of factorials.
%Y A089259 counts set multipartitions of integer partitions.
%Y A116540 counts normal set multipartitions.
%Y A157612 counts strict factorizations of factorials.
%Y Cf. A000110, A005117, A008480, A124010, A318360.
%Y Factorial numbers: A000142, A007489, A022559, A027423, A071626, A325272, A325617, A336498.
%K nonn
%O 1,3
%A _Reinhard Zumkeller_, Feb 15 2005
%E a(17)-a(18) from _Amiram Eldar_, Sep 30 2019
%E a(19)-a(31) from _Giovanni Resta_, Sep 30 2019