The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103773 Primes from merging of 9 successive digits in decimal expansion of the Golden Ratio, (1+sqrt(5))/2. 31
 398874989, 752126633, 250171169, 222104321, 626296313, 381497587, 587012203, 408058879, 410443207, 104432077, 850987433, 433944221, 798731761, 523689427, 287856997, 165339247, 115881863, 993432359, 509040947, 116456299, 602017279, 471753427, 827505131, 248093947 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Leading zeros are not permitted, so each term is 9 digits in length. - Harvey P. Dale, Oct 23 2011 Presumably all 45086079 possible terms eventually occur, probably in the first billion terms or so. - Charles R Greathouse IV, Sep 25 2012 REFERENCES Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3, Fall 1998, p. 176. Solution published in Vol. 12, No. 1, Winter 2000, pp. 61-62. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Golden Ratio. Expansion of the Golden Ratio done to 20,000 digits as part of project Gutenberg. MATHEMATICA Select[FromDigits/@Partition[RealDigits[GoldenRatio, 10, 2000][[1]], 9, 1], IntegerLength[#]==9&&PrimeQ[#]&] (* Harvey P. Dale, Mar 19 2011 *) CROSSREFS Sequence in context: A271022 A015369 A321138 * A172602 A108212 A103124 Adjacent sequences:  A103770 A103771 A103772 * A103774 A103775 A103776 KEYWORD nonn,base AUTHOR Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005 EXTENSIONS Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009 Extended by Harvey P. Dale, Mar 19 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 08:23 EST 2022. Contains 350475 sequences. (Running on oeis4.)