login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172602
Number of 7*n X n 0..1 arrays with row sums 2 and column sums 14
1
0, 1, 399072960, 26630804377937061000, 49825573548689359631837113344000, 1415189158639246716651027917944817871202200000, 396138136990560832867276344563606859994639454544654153984000
OFFSET
1,3
REFERENCES
Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..45 (terms 1..13 from R. H. Hardin)
FORMULA
a(n) = ((7n)!n!/(2^(7n)))*Sum_{r0=0..n} Sum_{r1=0..n-r0} Sum_{r2=0..n-r0-r1} Sum_{r3=0..n-r0-r1-r2} Sum_{r4=0..n-r0-r1-r2-r3} Sum_{r5=0..n-r0-r1-r2-r3-r4} Sum_{r6=0..n-r0-r1-r2-r3-r4-r5} (1/(r0!r1!r2!r3!r4!r5!r6!(n-r0-r1-r2-r3-r4-r5-r6)!))*((-1)^(-6r1-5r2-4r3-3r4-2r5-r6+7n-7r0)/(7n+6r1+5r2+4r3+3r4+2r5+r6-7n+7r0)!)*((14r0+12r1+10r2+8r3+6r4+4r5+2r6)!/((14!)^r0*(12!)^r1*(2!10!)^r2*(3!8!)^r3*(4!6!)^r4*(5!4!)^r5*(6!2!)^r6*(7!)^(n-r0-r1-r2-r3-r4-r5-r6))). - Shanzhen Gao, Feb 18 2010
a(n) ~ sqrt(Pi) * 7^(12*n + 1/2) * n^(14*n + 1/2) / (2^(4*n-1) * 3^(5*n) * 5^(2*n) * 11^n * 13^n * exp(14*n + 13/2)). - Vaclav Kotesovec, Oct 24 2023
MATHEMATICA
Table[(7*n)!*n!/2^(7*n) * Sum[Sum[Sum[Sum[Sum[Sum[Sum[ 1/(r0!*r1!*r2!*r3!*r4!*r5!*r6! * (n-r0-r1-r2-r3-r4-r5-r6)!) * ((-1)^(-6*r1-5*r2-4*r3-3*r4-2*r5-r6+7*n-7*r0) / (7*n+6*r1+5*r2+4*r3+3*r4+2*r5+r6-7*n+7*r0)!) * ((14*r0+12*r1+10*r2+8*r3+6*r4+4*r5+2*r6)! / ((14!)^r0*(12!)^r1*(2!10!)^r2*(3!8!)^r3*(4!6!)^r4*(5!4!)^r5*(6!2!)^r6*(7!)^(n-r0-r1-r2-r3-r4-r5-r6))), {r6, 0, n-r0-r1-r2-r3-r4-r5}], {r5, 0, n-r0-r1-r2-r3-r4}], {r4, 0, n-r0-r1-r2-r3}], {r3, 0, n-r0-r1-r2}], {r2, 0, n-r0-r1}], {r1, 0, n-r0}], {r0, 0, n}], {n, 1, 10}] (* Vaclav Kotesovec, Oct 23 2023 *)
CROSSREFS
Sequence in context: A015369 A321138 A103773 * A108212 A103124 A259224
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2010
STATUS
approved