login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108212
a(n) = floor(p(n+3)), where p(n) = n*Sum_{i=0..5} i!/(log(n) - 1)^(i+1).
1
399404041, 156868, 13421, 3518, 1478, 800, 505, 353, 265, 209, 172, 146, 127, 113, 102, 93, 86, 80, 76, 72, 68, 65, 63, 61, 59, 57, 56, 55, 54, 53, 52, 51, 50, 50, 49, 49, 49, 48, 48, 48, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47
OFFSET
0,1
LINKS
FORMULA
a(n) = floor(p(n+3)), where p(n) = n*Sum_{i=0..5} i!/(log(n) - 1)^(i+1).
MATHEMATICA
p[n_]= n*Sum[i!/(Log[n]-1)^(i+1), {i, 0, 5}];
Table[Floor[p[n+3]], {n, 0, 70}]
PROG
(Magma)
p:= func< n | n*(&+[Factorial(j)/(Log(n)-1)^(j+1): j in [0..5]]) >;
A108212:= func< n | Floor(p(n+3)) >;
[A108212(n): n in [0..70]]; // G. C. Greubel, Dec 19 2022
(SageMath)
def p(n): return n*sum(factorial(j)/(log(n)-1)^(j+1) for j in range(6))
def A108212(n): return floor(p(n+3))
[A108212(n) for n in range(71)] # G. C. Greubel, Dec 19 2022
CROSSREFS
Sequence in context: A321138 A103773 A172602 * A103124 A259224 A038132
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, Jun 15 2005
EXTENSIONS
Edited by G. C. Greubel, Dec 19 2022
STATUS
approved