login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157612
Number of factorizations of n! into distinct factors.
9
1, 1, 1, 2, 5, 16, 57, 253, 1060, 5285, 28762, 191263, 1052276, 8028450, 56576192, 424900240, 2584010916, 24952953943, 178322999025, 1886474434192, 15307571683248, 143131274598786, 1423606577935925, 17668243239613767, 137205093278725072, 1399239022852163764, 15774656316828338767
OFFSET
0,4
COMMENTS
The number of factorizations of (n+1)! into k distinct factors can be arranged into the following triangle:
2! 1;
3! 1, 1;
4! 1, 3, 1;
5! 1, 7, 7, 1;
...
FORMULA
a(n) = A045778(A000142(n)).
EXAMPLE
3! = 6 = 2*3.
a(3) = 2 because there are 2 factorizations of 3!.
4! = 24 = 2*12 = 3*8 = 4*6 = 2*3*4.
a(4) = 5 because there are 5 factorizations of 4!.
5! = 120 (1)
5! = 2*60 = 3*40 = 4*30 = 5*24 = 6*20 = 8*15 = 10*12 (7)
5! = 2*3*20 = 2*4*15 = 2*5*12 = 2*6*10 = 3*4*10 = 3*5*8 = 4*5*6 (7)
5! = 2*3*4*5 (1)
a(5) = 16 because there are 16 factorizations of 5!.
MAPLE
with(numtheory):
b:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
end:
a:= n-> b(n!$2):
seq(a(n), n=0..12); # Alois P. Heinz, May 26 2013
MATHEMATICA
b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d-1]], {d, Divisors[n] ~Complement~ {1, n}}]];
a[n_] := b[n!, n!];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
PROG
(PARI) \\ See A318286 for count.
a(n)={if(n<=1, 1, count(factor(n!)[, 2]))} \\ Andrew Howroyd, Feb 01 2020
CROSSREFS
Cf. A076716, A157017, A157229, A318286. See A157836 for continuation of triangle.
Sequence in context: A357580 A192635 A009225 * A348103 A184943 A286946
KEYWORD
nonn
AUTHOR
Jaume Oliver Lafont, Mar 03 2009
EXTENSIONS
a(8)-a(12) from Ray Chandler, Mar 07 2009
a(13)-a(17) from Alois P. Heinz, May 26 2013
a(18)-a(19) from Alois P. Heinz, Jan 10 2015
a(20)-a(26) from Andrew Howroyd, Feb 01 2020
STATUS
approved