login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318286
Number of strict multiset partitions of a multiset whose multiplicities are the prime indices of n.
22
1, 1, 1, 2, 2, 3, 2, 5, 5, 5, 3, 9, 4, 7, 9, 15, 5, 18, 6, 16, 14, 10, 8, 31, 17, 14, 40, 25, 10, 34, 12, 52, 21, 19, 27, 70, 15, 25, 31, 59, 18, 57, 22, 38, 80, 33, 27, 120, 46, 67, 44, 56, 32, 172, 42, 100, 61, 43, 38, 141, 46, 55, 143, 203, 64, 91, 54, 80
OFFSET
1,4
LINKS
FORMULA
a(n) = A045778(A181821(n)).
a(prime(n)^k) = A219585(n, k). - Andrew Howroyd, Dec 17 2018
MATHEMATICA
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
Table[Length[strfacs[Times@@Prime/@nrmptn[n]]], {n, 60}]
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=1/prod(i=1, #p, 1 - x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}
a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 18 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 23 2018
STATUS
approved