login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of strict multiset partitions of a multiset whose multiplicities are the prime indices of n.
22

%I #12 Dec 18 2018 05:10:22

%S 1,1,1,2,2,3,2,5,5,5,3,9,4,7,9,15,5,18,6,16,14,10,8,31,17,14,40,25,10,

%T 34,12,52,21,19,27,70,15,25,31,59,18,57,22,38,80,33,27,120,46,67,44,

%U 56,32,172,42,100,61,43,38,141,46,55,143,203,64,91,54,80

%N Number of strict multiset partitions of a multiset whose multiplicities are the prime indices of n.

%H Andrew Howroyd, <a href="/A318286/b318286.txt">Table of n, a(n) for n = 1..500</a>

%F a(n) = A045778(A181821(n)).

%F a(prime(n)^k) = A219585(n, k). - _Andrew Howroyd_, Dec 17 2018

%t nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];

%t strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];

%t Table[Length[strfacs[Times@@Prime/@nrmptn[n]]],{n,60}]

%o (PARI)

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}

%o count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=1/prod(i=1, #p, 1 - x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}

%o a(n)={if(n==1, 1, count(sig(n)))} \\ _Andrew Howroyd_, Dec 18 2018

%Y Cf. A001055, A007716, A045778, A181821, A305936, A316980, A317776.

%Y Cf. A318283, A318284, A318285, A318287, A318360, A318361.

%K nonn

%O 1,4

%A _Gus Wiseman_, Aug 23 2018