OFFSET
1,3
COMMENTS
LINKS
R. J. Mathar and Michael De Vlieger, Table of n, a(n) for n = 1..5000 (First 300 terms from R. J. Mathar)
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
EXAMPLE
From Gus Wiseman, Jan 13 2020: (Start)
The a(1) = 1 through a(11) = 9 factorizations:
{} 2 4 6 8 12 16 24 30 32 36
2*2 2*3 2*4 2*6 2*8 3*8 5*6 4*8 4*9
2*2*2 3*4 4*4 4*6 2*15 2*16 6*6
2*2*3 2*2*4 2*12 3*10 2*2*8 2*18
2*2*2*2 2*2*6 2*3*5 2*4*4 3*12
2*3*4 2*2*2*4 2*2*9
2*2*2*3 2*2*2*2*2 2*3*6
3*3*4
2*2*3*3
(End)
MAPLE
MATHEMATICA
c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{d, i}, d = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/d[[i]], d[[i]]], {i, 1, Length[d]}]]; Map[c[#, #] &, Union@ Table[Times @@ MapIndexed[If[n == 1, 1, Prime[First@ #2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, Product[Prime@ i, {i, 6}]}]] (* Michael De Vlieger, Jul 10 2017, after Dean Hickerson at A001055 *)
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Length/@facs/@First/@GatherBy[Range[1000], If[#==1, {}, Sort[Last/@FactorInteger[#]]]&] (* Gus Wiseman, Jan 13 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved