login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050322
Number of factorizations indexed by prime signatures: A001055(A025487).
9
1, 1, 2, 2, 3, 4, 5, 7, 5, 7, 9, 12, 11, 11, 16, 19, 21, 15, 29, 26, 30, 15, 31, 38, 22, 47, 52, 45, 36, 57, 64, 30, 77, 98, 67, 74, 97, 66, 105, 42, 109, 118, 92, 109, 171, 97, 141, 162, 137, 165, 56, 212, 181, 52, 198, 189, 289, 139, 250, 257, 269, 254, 77, 382, 267
OFFSET
1,3
COMMENTS
For A025487(m) = 2^k = A000079(k), we have a(m) = A000041(k).
Is a(k) = A000110(k) for A025487(m) = A002110(k)?
LINKS
R. J. Mathar and Michael De Vlieger, Table of n, a(n) for n = 1..5000 (First 300 terms from R. J. Mathar)
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
EXAMPLE
From Gus Wiseman, Jan 13 2020: (Start)
The a(1) = 1 through a(11) = 9 factorizations:
{} 2 4 6 8 12 16 24 30 32 36
2*2 2*3 2*4 2*6 2*8 3*8 5*6 4*8 4*9
2*2*2 3*4 4*4 4*6 2*15 2*16 6*6
2*2*3 2*2*4 2*12 3*10 2*2*8 2*18
2*2*2*2 2*2*6 2*3*5 2*4*4 3*12
2*3*4 2*2*2*4 2*2*9
2*2*2*3 2*2*2*2*2 2*3*6
3*3*4
2*2*3*3
(End)
MAPLE
A050322 := proc(n)
end proc: # R. J. Mathar, May 25 2017
MATHEMATICA
c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{d, i}, d = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/d[[i]], d[[i]]], {i, 1, Length[d]}]]; Map[c[#, #] &, Union@ Table[Times @@ MapIndexed[If[n == 1, 1, Prime[First@ #2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, Product[Prime@ i, {i, 6}]}]] (* Michael De Vlieger, Jul 10 2017, after Dean Hickerson at A001055 *)
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Length/@facs/@First/@GatherBy[Range[1000], If[#==1, {}, Sort[Last/@FactorInteger[#]]]&] (* Gus Wiseman, Jan 13 2020 *)
CROSSREFS
The version indexed by unsorted prime signature is A331049.
The version indexed by prime shadow (A181819, A181821) is A318284.
This sequence has range A045782 (same as A001055).
Sequence in context: A045475 A316078 A082543 * A325512 A211858 A349149
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved