login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330998
Sorted list containing the least number whose inverse prime shadow (A181821) has each possible nonzero number of factorizations into factors > 1.
9
1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
OFFSET
1,2
COMMENTS
This is the sorted list of positions of first appearances in A318284 of each element of the range A045782.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.
EXAMPLE
Factorizations of the inverse prime shadows of the initial terms:
4 8 12 16 36 24 60 48
2*2 2*4 2*6 2*8 4*9 3*8 2*30 6*8
2*2*2 3*4 4*4 6*6 4*6 3*20 2*24
2*2*3 2*2*4 2*18 2*12 4*15 3*16
2*2*2*2 3*12 2*2*6 5*12 4*12
2*2*9 2*3*4 6*10 2*3*8
2*3*6 2*2*2*3 2*5*6 2*4*6
3*3*4 3*4*5 3*4*4
2*2*3*3 2*2*15 2*2*12
2*3*10 2*2*2*6
2*2*3*5 2*2*3*4
2*2*2*2*3
The corresponding multiset partitions:
{11} {111} {112} {1111} {1122} {1112}
{1}{1} {1}{11} {1}{12} {1}{111} {1}{122} {1}{112}
{1}{1}{1} {2}{11} {11}{11} {11}{22} {11}{12}
{1}{1}{2} {1}{1}{11} {12}{12} {2}{111}
{1}{1}{1}{1} {2}{112} {1}{1}{12}
{1}{1}{22} {1}{2}{11}
{1}{2}{12} {1}{1}{1}{2}
{2}{2}{11}
{1}{1}{2}{2}
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
nds=Table[Length[facs[Times@@Prime/@nrmptn[n]]], {n, 50}];
Table[Position[nds, i][[1, 1]], {i, First/@Gather[nds]}]
CROSSREFS
Taking n instead of the inverse prime shadow of n gives A330972.
Factorizations are A001055, with image A045782, with complement A330976.
Factorizations of inverse prime shadows are A318284.
Sequence in context: A125236 A137624 A238246 * A099467 A054353 A284555
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 07 2020
STATUS
approved