login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035472
Coordination sequence for lattice D*_6 (with edges defined by l_1 norm = 1).
1
1, 12, 72, 356, 1296, 3708, 8920, 18900, 36384, 65004, 109416, 175428, 270128, 402012, 581112, 819124, 1129536, 1527756, 2031240, 2659620, 3434832, 4381244, 5525784, 6898068, 8530528, 10458540, 12720552, 15358212, 18416496, 21943836
OFFSET
0,2
LINKS
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
FORMULA
a(m) = Sum_{k=0..n} 2^k*binomial(n, k)*binomial(m-1, k-1) + 2^n*binomial((n+2*m)/2-1, n-1); with n=6.
From Colin Barker, Apr 14 2012: (Start)
a(n)=(4*n*(31+10*n^2+4*n^4))/15 for n>0.
G.f.: (1+6*x+x^2)*(1+14*x^2+x^4)/(1-x)^6. (End)
PROG
(PARI) a(m) = if (m==0, 1, my(n=6); sum(k=0, n, 2^k*binomial(n, k)*binomial(m-1, k-1)) + 2^n*binomial((n+2*m)/2-1, n-1)); \\ Michel Marcus, Mar 19 2021
CROSSREFS
Sequence in context: A236967 A227022 A036392 * A036398 A125322 A126480
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, J. Serra-Sagrista (jserra(AT)ccd.uab.es)
STATUS
approved