login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035475 Coordination sequence for lattice D*_12 (with edges defined by l_1 norm = 1). 1
1, 24, 288, 2312, 14016, 68664, 288096, 1071912, 3600768, 11036504, 31125408, 81412680, 199013440, 457923960, 998269920, 2073758312, 4126016256, 7897561752, 14598964768, 26150436744, 45523755456, 77217221304, 127904389728 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. Serra-Sagrista, Enumeration of lattice points in l_1 norm, Information Processing Letters, 76, no. 1-2 (2000), 39-44.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1).

FORMULA

a(m)=add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n)+2^n*binomial((n+2*m)/2-1, n-1); with n=12.

G.f.: (x^4+4*x^3+22*x^2+4*x+1)*(x^8+8*x^7+12*x^6-8*x^5+230*x^4-8*x^3+12*x^2+8*x+1) / (x-1)^12. - Colin Barker, Nov 20 2012

MATHEMATICA

CoefficientList[Series[(x^4 + 4 x^3 + 22 x^2 + 4 x + 1) (x^8 + 8 x^7 + 12 x^6 - 8 x^5 + 230 x^4 - 8 x^3 + 12 x^2 + 8 x + 1)/(x - 1)^12, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 21 2013 *)

CROSSREFS

Sequence in context: A297082 A282154 A035707 * A288458 A042110 A282993

Adjacent sequences:  A035472 A035473 A035474 * A035476 A035477 A035478

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, J. Serra-Sagrista (jserra(AT)ccd.uab.es)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 12:50 EST 2021. Contains 349523 sequences. (Running on oeis4.)