login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126480
Number of base 12 n-digit numbers with adjacent digits differing by three or less.
3
1, 12, 72, 448, 2816, 17780, 112440, 711504, 4503320, 28505304, 180439880, 1142206528, 7230339936, 45769222384, 289726772704, 1834018988272, 11609648360160, 73491027329888, 465210573030272, 2944861245639136
OFFSET
0,2
COMMENTS
Empirical: a(base,n) = a(base-1,n)+7^(n-1) for base>=3n-2; a(base,n) = a(base-1,n)+7^(n-1)-2 when base=3n-3.
Note that this allows leading 0's.
For n >= 1, a(n) = e' M^(n-1) e where M is the 12 x 12 matrix with M[i,j] = 1 for |i-j| <= 3, 0 otherwise, and e is the column vector of 12 1's. The recurrence follows from the fact that (M^5 - 8 M^4 + 8 M^3 + 18 M^2 - 10 M - 6 I) e = 0. - Robert Israel, May 08 2014
FORMULA
G.f.: (1+4*x-16*x^2-14*x^3+14*x^4+6*x^5)/(1-8*x+8*x^2+18*x^3-10*x^4-6*x^5). - Robert Israel, May 08 2014
Recurrence: a(n+5) = 8*a(n+4)-8*a(n+3)-18*a(n+2)+10*a(n+1)+6*a(n) for n >= 1. - Robert Israel, May 08 2014
MAPLE
M:= Matrix(12, 12, (i, j) -> `if`(abs(i-j)<=3, 1, 0));
e:= Vector(12, 1);
A126480:= n -> e^%T . M^(n-1) . e;
A126480(0):= 1;
seq(A126480(n), n=0..100); # Robert Israel, May 08 2014
MATHEMATICA
LinearRecurrence[{8, -8, -18, 10, 6}, {1, 12, 72, 448, 2816, 17780}, 30] (* Harvey P. Dale, Jun 12 2017 *)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-2](($[i]`-$[i+1]`>3)+($[i+1]`-$[i]`>3))
CROSSREFS
Cf. Base 12 differing by two or less A126399, one or less A126366.
Sequence in context: A035472 A036398 A125322 * A030235 A088166 A138402
KEYWORD
nonn,base
AUTHOR
R. H. Hardin, Dec 27 2006
STATUS
approved