login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035473
Coordination sequence for lattice D*_8 (with edges defined by l_1 norm = 1).
1
1, 16, 128, 688, 3072, 11472, 36224, 99184, 241664, 535440, 1097344, 2107952, 3834880, 6661200, 11119488, 17932016, 28057600, 42745616, 63597696, 92637616, 132389888, 185967568, 257169792, 350589552, 471732224, 627145360, 824560256, 1073045808, 1383175168
OFFSET
0,2
LINKS
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
FORMULA
a(m) = sum(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n)+2^n*binomial((n+2*m)/2-1, n-1), where n=8, a(0)=1.
G.f.: (x^8+8*x^7+28*x^6+56*x^5+326*x^4+56*x^3+28*x^2+8*x+1) / (x-1)^8. [Colin Barker, Nov 19 2012]
MATHEMATICA
CoefficientList[Series[(x^8 + 8 x^7 + 28 x^6 + 56 x^5 + 326 x^4 + 56 x^3 + 28 x^2 + 8 x + 1)/(x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)
PROG
(Magma) n:=8; [1] cat [&+[2^k*Binomial(n, k)*Binomial(m-1, k-1): k in [0..n]]+2^n*Binomial((n+2*m) div 2-1, n-1): m in [1..30]]; // Bruno Berselli, Oct 21 2013
CROSSREFS
Sequence in context: A008535 A008416 A045651 * A014972 A115977 A128692
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, J. Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
More terms from Vincenzo Librandi, Oct 21 2013
STATUS
approved