login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008535
Coordination sequence for {A_7}* lattice.
1
1, 16, 128, 688, 2746, 8752, 23536, 55568, 118498, 232976, 428752, 747056, 1243258, 1989808, 3079456, 4628752, 6781826, 9714448, 13638368, 18805936, 25515002, 34114096, 45007888, 58662928, 75613666, 96468752, 121917616, 152737328, 189799738, 234078896
OFFSET
0,2
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
FORMULA
G.f.: (1+x)*(1+8*x+29*x^2+64*x^3+29*x^4+8*x^5+x^6)/(1-x)^7. - Colin Barker, Mar 03 2015
E.g.f.: -1 + (36 + 252*x + 882*x^2 + 1050*x^3 + 525*x^4 + 105*x^5 + 7*x^6)*exp(x)/18. - G. C. Greubel, Nov 10 2019
MAPLE
1, seq( (7*k^6+70*k^4+175*k^2+36)/18, k=1..40);
MATHEMATICA
Table[If[n==0, 1, (36+175*n^2+70*n^4+7*n^6)/18], {n, 0, 40}] (* G. C. Greubel, Nov 10 2019 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 16, 128, 688, 2746, 8752, 23536, 55568}, 40] (* Harvey P. Dale, Jun 04 2023 *)
PROG
(PARI) Vec(-(x+1)*(x^6+8*x^5+29*x^4+64*x^3+29*x^2+8*x+1) / (x-1)^7 + O(x^40)) \\ Colin Barker, Mar 03 2015
(PARI) vector(46, n, if(n==1, 1, (36+175*(n-1)^2+70*(n-1)^4+7*(n-1)^6)/18 ) ) \\ G. C. Greubel, Nov 10 2019
(Magma) [1] cat [(36+175*n^2+70*n^4+7*n^6)/18: n in [1..45]]; // G. C. Greubel, Nov 10 2019
(Sage) [1]+[(36+175*n^2+70*n^4+7*n^6)/18 for n in (1..45)]; # G. C. Greubel, Nov 10 2019
(GAP) Concatenation([1], List([1..45], n-> (36+175*n^2+70*n^4+7*n^6)/18 )); # G. C. Greubel, Nov 10 2019
CROSSREFS
Sequence in context: A153115 A138331 A290031 * A008416 A045651 A035473
KEYWORD
nonn,easy
STATUS
approved