login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014972
Expansion of (theta_3(q) / theta_4(q) )^4 in powers of q; also of 1 / (1 - lambda(z)).
11
1, 16, 128, 704, 3072, 11488, 38400, 117632, 335872, 904784, 2320128, 5702208, 13504512, 30952544, 68901888, 149403264, 316342272, 655445792, 1331327616, 2655115712, 5206288384, 10049485312, 19115905536, 35867019904, 66437873664
OFFSET
0,2
COMMENTS
The relation with A092877 is equivalent to eta(q^2)^24 = eta(q)^16 * eta(q^4)^8 + 16 * eta(q)^8 * eta(q^4)^16. - Michael Somos, Apr 11 2004
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
LINKS
Eric Weisstein's World of Mathematics, Elliptic Lambda Function
FORMULA
Expansion of 1 / (1 - lambda(t)) = 1 / lambda(-1 / t) in powers of q = exp(Pi i t).
Expansion of (phi(q) / phi(-q))^4 = (phi(-q^2) / phi(-q))^8 = (phi(q) / phi(-q^2))^8 = (f(q) / f(-q))^8 = (chi(q)/ chi(-q))^8 = (psi(q) / psi(-q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (eta(q^2)^3 / (eta(q^4) * eta(q)^2))^8 in powers of q. - Michael Somos, Apr 11 2004
Euler transform of period 4 sequence [ 16, -8, 16, 0, ...]. - Michael Somos, Apr 11 2004
G.f. A(x) satisfies A(-x) = 1 / A(x). Also 0 = f(A(x), A(x^2)) where f(u, v) = (u - 1)^2 + 16 * u*v * (1 - v). - Michael Somos, Apr 11 2004
G.f.: (Product_{k>0} (1 + x^(2*k - 1)) / (1 - x^(2*k - 1)))^8 = exp( 16 * Sum_{k>0} x^(2*k - 1) * sigma(2*k - 1) / (2*k - 1)). - Michael Somos, Apr 11 2004
a(n) = 16 * A092877(n) unless n = 0. a(n) = A132136(n) unless n = 0. Convolution inverse of A128692.
Empirical : Sum_{n >=1} exp(-2*Pi)^(n-1)*(-1)^(n+1)*a(n) = -16+12*2^(1/2). - Simon Plouffe, Feb 20 2011
a(n) ~ exp(2*Pi*sqrt(n)) / (32 * n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
EXAMPLE
G.f. = 1 + 16*q + 128*q^2 + 704*q^3 + 3072*q^4 + 11488*q^5 + 38400*q^6 + 117632*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q])^4, {q, 0, n}]; (* Michael Somos, Jun 25 2014 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^3 / (QPochhammer[ q^4] QPochhammer[ q]^2))^8, {q, 0, n}]; (* Michael Somos, Jun 25 2014 *)
nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^8, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( exp( 16 * sum( k=1, (n+1)\2, sigma(2*k - 1) / (2*k - 1) * x^(2*k - 1), x * O(x^n))), n))}; /* Michael Somos, Apr 11 2004 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)))^8, n))}; /* Michael Somos, Apr 11 2004 */
CROSSREFS
KEYWORD
nonn
STATUS
approved