The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190233 a(n) = [n*u+n*v] - [n*u] - [n*v], where u=sin(Pi/8), v=cos(Pi/8), and []=floor. 3
 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 MATHEMATICA u = Sin[Pi/8]; v = Cos[Pi/8]; f[n_] := Floor[n*u + n*v] - Floor[n*u] - Floor[n*v] t = Table[f[n], {n, 1, 120}] (* A190233 *) Flatten[Position[t, 0]]      (* A190234 *) Flatten[Position[t, 1]]      (* A190235 *) PROG (PARI) for(n=1, 30, print1(floor(n*(sin(Pi/8) + cos(Pi/8))) - floor(n*cos(Pi/8)) - floor(n*sin(Pi/8)), ", ")) \\ G. C. Greubel, Dec 27 2017 (MAGMA) C := ComplexField(); [Floor(n*(Sin(Pi(C)/8) + Cos(Pi(C)/8))) - Floor(n*Sin(Pi(C)/8)) - Floor(n*Cos(Pi(C)/8)): n in [1..30]]; // G. C. Greubel, Dec 27 2017 CROSSREFS Cf. A190234, A190235. Sequence in context: A077049 A124895 A089885 * A143242 A136442 A168030 Adjacent sequences:  A190230 A190231 A190232 * A190234 A190235 A190236 KEYWORD nonn AUTHOR Clark Kimberling, May 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 13:44 EDT 2021. Contains 344948 sequences. (Running on oeis4.)