login
A143242
Expansion of Product_{k>0} (1 - x^(9*k)) * (1-x^(9*k-2)) * (1-x^(9*k-7)) / ((1-x^(9*k-1)) * (1-x^(9*k-6)) * (1-x^(9*k-8))).
1
1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 1, 0, 1, 1, 0, 0, -1, 0, 1, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
OFFSET
0,157
COMMENTS
|a(n)|<2 if n<156, |a(n)|<3 if n<250.
It appears that a(n) = 0 if n == 2 (mod 3). - Robert Israel, Jan 31 2018
LINKS
FORMULA
Euler transform of period 9 sequence [ 1, -1, 1, 0, 0, 0, -1, 1, -1, ...].
G.f.: Product_{k>0} (1 - x^(9*k)) * (1-x^(9*k-2)) * (1-x^(9*k-7)) / ((1-x^(9*k-1)) * (1-x^(9*k-6)) * (1-x^(9*k-8))).
EXAMPLE
1 + q + q^3 + q^4 + q^6 + q^9 + q^12 + q^13 + q^16 + q^21 + q^24 + q^25 + ...
MAPLE
N:= 100: # to get a(0)..a(N)
g:= mul((1 - x^(9*k)) * (1-x^(9*k-2)) * (1-x^(9*k-7)) / ((1-x^(9*k-1)) * (1-x^(9*k-6)) * (1-x^(9*k-8))), k=1..floor((N+8)/9)):
S:= series(g, x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Jan 31 2018
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^([1, -1, 1, -1, 0, 0, 0, 1, -1][k%9 + 1]), 1 + x * O(x^n)), n))}
CROSSREFS
Sequence in context: A124895 A089885 A190233 * A136442 A168030 A128431
KEYWORD
sign,look
AUTHOR
Michael Somos, Aug 01 2008
STATUS
approved