login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143242
Expansion of Product_{k>0} (1 - x^(9*k)) * (1-x^(9*k-2)) * (1-x^(9*k-7)) / ((1-x^(9*k-1)) * (1-x^(9*k-6)) * (1-x^(9*k-8))).
1
1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 1, 0, 1, 1, 0, 0, -1, 0, 1, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
OFFSET
0,157
COMMENTS
|a(n)|<2 if n<156, |a(n)|<3 if n<250.
It appears that a(n) = 0 if n == 2 (mod 3). - Robert Israel, Jan 31 2018
LINKS
FORMULA
Euler transform of period 9 sequence [ 1, -1, 1, 0, 0, 0, -1, 1, -1, ...].
G.f.: Product_{k>0} (1 - x^(9*k)) * (1-x^(9*k-2)) * (1-x^(9*k-7)) / ((1-x^(9*k-1)) * (1-x^(9*k-6)) * (1-x^(9*k-8))).
EXAMPLE
1 + q + q^3 + q^4 + q^6 + q^9 + q^12 + q^13 + q^16 + q^21 + q^24 + q^25 + ...
MAPLE
N:= 100: # to get a(0)..a(N)
g:= mul((1 - x^(9*k)) * (1-x^(9*k-2)) * (1-x^(9*k-7)) / ((1-x^(9*k-1)) * (1-x^(9*k-6)) * (1-x^(9*k-8))), k=1..floor((N+8)/9)):
S:= series(g, x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Jan 31 2018
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^([1, -1, 1, -1, 0, 0, 0, 1, -1][k%9 + 1]), 1 + x * O(x^n)), n))}
CROSSREFS
Sequence in context: A124895 A089885 A190233 * A136442 A168030 A128431
KEYWORD
sign,look
AUTHOR
Michael Somos, Aug 01 2008
STATUS
approved