login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283616
a(n) = Product_{k=2..floor(sqrt(2n-1)/2)+1} (2n-1) mod (2k-1).
1
1, 1, 2, 1, 0, 2, 1, 0, 4, 4, 0, 6, 0, 0, 8, 1, 0, 0, 4, 0, 12, 3, 0, 20, 0, 0, 24, 0, 0, 24, 5, 0, 0, 32, 0, 16, 9, 0, 0, 56, 0, 72, 0, 0, 320, 0, 0, 0, 84, 0, 24, 240, 0, 512, 160, 0, 90, 0, 0, 0, 0, 0, 0, 12, 0, 500, 0, 0, 160, 672, 0, 0, 0, 0, 2880, 1792, 0, 0, 72, 0, 0, 378
OFFSET
1,3
COMMENTS
For n>1, if a(n) > 0 then 2n-1 is prime.
From Robert G. Wilson v, Mar 15 2017: (Start)
Except for n=1, a(n)=0 iff 2n-1 is not prime (A104275).
a(n) is prime for n: 3, 6, 22 & 31. (End)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Table[Product[Mod[(2 n - 1), (2 k - 1)], {k, 2, Floor[Sqrt[2 n - 1]/2] + 1}], {n, 80}] (* Michael De Vlieger, Mar 15 2017 *)
PROG
(PARI) a(n)=my(t=2*n-1); prod(k=2, sqrtint(t\4)+1, t%(2*k-1)) \\ Charles R Greathouse IV, Mar 22 2017
CROSSREFS
Cf. A180491.
Sequence in context: A337548 A029296 A096419 * A130182 A024361 A305614
KEYWORD
nonn
AUTHOR
STATUS
approved