OFFSET
1,2
COMMENTS
Same as A053726 except for the first term of this sequence.
Numbers k such that A064216(k) is not prime. - Antti Karttunen, Apr 17 2015
Union of 1 and terms of the form (u+1)*(v+1) + u*v with 1 <= u <= v. - Ralf Steiner, Nov 17 2021
LINKS
Vincenzo Librandi (first 1000 terms) & Antti Karttunen, Table of n, a(n) for n = 1..10001
FORMULA
a(n) = A047845(n-1) + 1.
a(n) = (A014076(n)+1)/2. - Robert Israel, Apr 17 2015
EXAMPLE
a(1) = 1 because 2*1-1=1, not prime.
a(2) = 5 because 2*5-1=9, not prime (2, 3 and 4 give 3, 5 and 7 which are primes).
From Vincenzo Librandi, Jan 15 2013: (Start)
As a triangular array (apart from term 1):
5;
8, 13;
11, 18, 25;
14, 23, 32, 41;
17, 28, 39, 50, 61;
20, 33, 46, 59, 72, 85;
23, 38, 53, 68, 83, 98, 113;
26, 43, 60, 77, 94, 111, 128, 145;
29, 48, 67, 86, 105, 124, 143, 162, 181;
32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
which is obtained by (2*h*k + k + h + 1) with h >= k >= 1. (End)
The above array, which contains the same terms as A053726 but in different order and with some duplicates, has its own entry A144650. - Antti Karttunen, Apr 17 2015
MAPLE
remove(t -> isprime(2*t-1), [$1..1000]); # Robert Israel, Apr 17 2015
MATHEMATICA
Select[Range[115], !PrimeQ[2#-1] &] (* Robert G. Wilson v, Apr 18 2005 *)
PROG
(Magma) [n: n in [1..220]| not IsPrime(2*n-1)]; // Vincenzo Librandi, Jan 28 2011
(Scheme) (define (A104275 n) (if (= 1 n) 1 (A053726 (- n 1)))) ;; More code in A053726. - Antti Karttunen, Apr 17 2015
(Python)
from sympy import isprime
def ok(n): return not isprime(2*n-1)
print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, May 08 2021
(Python)
from sympy import primepi
def A104275(n):
if n <= 2: return ((n-1)<<2)+1
m, k = n-1, (r:=primepi(n-1)) + n - 1 + (n-1>>1)
while m != k:
m, k = k, (r:=primepi(k)) + n - 1 + (k>>1)
return r+n-1 # Chai Wah Wu, Aug 02 2024
(PARI) select( {is_A104275(n)=!isprime(n*2-1)}, [1..115]) \\ M. F. Hasler, Aug 02 2022
(SageMath) [n for n in (1..250) if not is_prime(2*n-1)] # G. C. Greubel, Oct 17 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Alexandre Wajnberg, Apr 17 2005
EXTENSIONS
More terms from Robert G. Wilson v, Apr 18 2005
STATUS
approved