login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283617 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers and 0 <= z <= w such that x^3 + 2*y^3 is a square. 2
1, 2, 3, 2, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 3, 2, 2, 4, 6, 4, 6, 3, 3, 2, 2, 3, 6, 5, 3, 4, 3, 2, 3, 4, 5, 4, 7, 3, 4, 2, 3, 6, 5, 3, 3, 4, 2, 3, 2, 3, 7, 4, 6, 4, 5, 3, 2, 4, 4, 4, 4, 3, 4, 4, 3, 6, 8, 4, 9, 6, 2, 3, 4, 4, 7, 5, 4, 4, 3, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture: (i) Let a and b >= a be positive integers with gcd(a,b) squarefree. Then, every n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that a*x^3 + b*y^3 is a square, if and only if (a,b) is among the ordered pairs (1,2), (1,8), (2,16), (4,23), (4,31), (5,9), (8,9), (8,225), (9,47), (25,88), (50,54).
(ii) Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x a nonnegative integer and y,z,w integers such that a*x^3 + b*y^3 is a square, whenever (a,b) is among the ordered pairs (1,8), (2,16), (8,1), (9,8), (88,25), (225,8).
(iii) Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z integers and w a positive integer such that x^3 + 19*y^3 + 19*z^3 is an integer cube.
(iv) Every n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that a*x^3 + b*y^3 + c*z^3 + d*w^3 is a square, whenever (a,b,c,d) is among the ordered quadruples (1,1,3,4), (1,2,3,5), (1,2,3,7), (1,2,4,5),(1,2,5,7), (1,3,4,5), (1,3,4,7), (1,3,6,8), (1,3,8,13), ((1,4,5,9), (1,7,8,11), (1,8,9,10), (1,8,9,11), (2,3,4,7), (2,4,7,9), (2,4,7,14), (2,7,9,11), (3,4,5,7), (3,8,9,11).
By the linked JNT paper, each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x + 2*y is a square.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(0) = 1 since 0 = 0^2 + 0^2 + 0^2 + 0^2 with 0^3 + 2*0^3 = 0^2.
a(7) = 1 since 7 = (-1)^2 + 1^2 + 1^2 + 2^2 with (-1)^3 + 2*1^3 = 1^2.
a(79) = 1 since 79 = 3^2 + 3^2 + 5^2 + 6^2 with 3^3 + 2*3^3 = 9^2.
a(88) = 1 since 88 = 4^2 + 0^2 + 6^2 + 6^2 with 4^3 + 2*0^3 = 8^2.
a(151) = 1 since 151 = (-1)^2 + 1^2 + 7^2 + 10^2 with (-1)^3 + 2*1^3 = 1^2.
a(219) = 1 since 219 = 1^2 + 0^2 + 7^2 + 13^2 with 1^3 + 2*0^3 = 1^2.
a(438) = 1 since 438 = (-1)^2 + 1^2 + 6^2 + 20^2 with (-1)^3 + 2*1^3 = 1^2.
a(471) = 1 since 471 = 3^2 + (-1)^2 + 10^2 + 19^2 with 3^3 + 2*(-1)^3 = 5^2.
a(599) = 1 since 599 = 7^2 + (-3)^2 + 10^2 + 21^2 with 7^3 + 2*(-3)^3 = 17^2.
a(751) = 1 since 751 = 3^2 + 3^2 + 2^2 + 27^2 with 3^3 + 2*3^3 = 9^2.
a(807) = 1 since 807 = 3^2 + (-1)^2 + 11^2 + 26^2 with 3^3 + 2*(-1)^3 = 5^2.
a(19743) = 1 since 19743 = (-25)^2 + 25^2 + 58^2 + 123^2 with (-25)^3 + 2*25^3 = 125^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[(-1)^i*x^3+2(-1)^j*y^3], Do[If[SQ[n-x^2-y^2-z^2], r=r+1], {z, 0, Sqrt[(n-x^2-y^2)/2]}]], {x, 0, Sqrt[n]}, {i, 0, Min[x, 1]}, {y, 0, Sqrt[n-x^2]}, {j, 0, Min[y, 1]}]; Print[n, " ", r], {n, 0, 80}]
CROSSREFS
Sequence in context: A321478 A076982 A351808 * A164886 A091935 A086063
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 12 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 16:21 EDT 2024. Contains 375044 sequences. (Running on oeis4.)