The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283620 a(n) is the least exponent k such that 3^k-1 is divisible by prime(n)^2, or -1 if no such k exists. 2
 2, -1, 20, 42, 5, 39, 272, 342, 253, 812, 930, 666, 328, 1806, 1081, 2756, 1711, 610, 1474, 2485, 876, 6162, 3403, 7832, 4656, 10100, 3502, 5671, 2943, 12656, 16002, 8515, 18632, 19182, 22052, 7550, 12246, 26406, 13861, 29756, 15931, 8145, 18145, 3088, 38612, 39402, 44310 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(2) is -1, because 3^n-1 cannot be divisible by prime(2)=3. For some terms, prime(n)^2 is also the least square of prime which divides 3^a(n)-1. This is the case for n=1, 5, 6, ..., that is, p=2, 11, 13, ... (see A283454). If n <> 2, then a(n) = A062117(n) if 3^A062117(n) == 1 (mod prime(n)^2), or prime(n)*A062117(n) if not. - Robert Israel, Mar 16 2017 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 (first 100 terms from Anton Mosunov) MAPLE subs(FAIL=-1, [seq(numtheory:-order(3, ithprime(i)^2), i=1..100)]); # Robert Israel, Mar 16 2017 MATHEMATICA Join[{2, -1}, Table[Module[{k=1}, While[PowerMod[3, k, Prime[n]^2]!=1, k++]; k], {n, 3, 50}]] (* Harvey P. Dale, Oct 22 2023 *) PROG (PARI) a(n) = if (n == 2, -1, k = 1; p = prime(n); while((3^k-1) % p^2, k++); k; ); CROSSREFS Cf. A024023, A062117, A249025, A283454. Sequence in context: A185169 A353914 A353873 * A012927 A013158 A012932 Adjacent sequences: A283617 A283618 A283619 * A283621 A283622 A283623 KEYWORD sign,look AUTHOR Michel Marcus, Mar 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 17:17 EST 2023. Contains 367500 sequences. (Running on oeis4.)