login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351808
a(n) is the quotient obtained when pod(m) divides pod(m^2), with pod = product of digits = A007954 and m = A351807(n).
2
1, 2, 3, 2, 3, 3, 2, 8, 18, 4, 10, 3, 2, 8, 32, 15, 6, 21, 9, 14, 18, 0, 0, 6, 12, 21, 24, 0, 0, 0, 0, 0, 0, 0, 0, 7, 32, 81, 0, 10, 4, 0, 30, 35, 0, 21, 144, 0, 64, 32, 0, 2, 0, 0, 0, 12, 80, 252, 243, 12, 60, 27, 48, 256, 15, 30, 140, 36, 8, 14, 336, 96, 144
OFFSET
1,2
COMMENTS
a(n) = 0 iff m = A351807(n) is a term of A134844.
As pod(m) is 7-smooth number and pod(m^2) can be 0 (see example), all terms of the sequence are in {0} union A002473. The smallest term k such that the corresponding quotient = 0 or A002473(n) is A351809(n).
EXAMPLE
A351807(9) = 13, then pod(13) = 1*3 = 3 while pod(13^2) = pod(169) = 1*6*9 = 54; hence, a(9) = 54/3 = 18.
A351807(23) = 33, then pod(33) = 3*3 = 9 while pod(33^2) = pod(1089) = 1*0*8*9 = 0; hence, a(23) = 0.
MATHEMATICA
pod[n_] := Times @@ IntegerDigits[n]; r[n_] := If[(p = pod[n]) > 0, pod[n^2]/p, 1/2]; Select[r /@ Range[200], IntegerQ] (* Amiram Eldar, Feb 21 2022 *)
PROG
(PARI) lista(nn) = {my(list=List()); for (m=1, nn, my(d=digits(m), q); if (vecmin(d) && denominator(q = vecprod(digits(m^2))/vecprod(d)) == 1, listput(list, q); ); ); Vec(list); } \\ Michel Marcus, Feb 21 2022
(Python)
from math import prod
from itertools import count, islice
def A351808_gen(): # generator of terms
return (q for q, r in (divmod(prod(int(d) for d in str(m**2)), prod(int(d) for d in str(m))) for m in count(1) if '0' not in str(m)) if r == 0)
A351808_list = list(islice(A351808_gen(), 20)) # Chai Wah Wu, Feb 25 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Feb 20 2022
EXTENSIONS
More terms from Amiram Eldar, Feb 21 2022
STATUS
approved