login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351806
Denominator of zeta({6}_n)/Pi^(6*n).
1
1, 945, 212837625, 64965492466875, 432684797065192546875, 1347828286825972065254765625, 197885500589205605585596463448046875, 18132629348577543860598956218936672646484375, 3673787208165374996876652878250276546299488037109375
OFFSET
0,2
COMMENTS
({6}_n) is standard notation for multiple zeta values. It represents (6, ..., 6) where the multiplicity of 6 is n.
LINKS
J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, arXiv:hep-th/9611004, 1996.
Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
FORMULA
a(n) = denominator(6*2^(6*n)/(6*n + 3)!).
MATHEMATICA
a[n_] := Denominator[6*2^(6*n)/(6*n + 3)!]; Array[a, 9, 0] (* Amiram Eldar, Feb 19 2022 *)
PROG
(PARI) a(n) = denominator(6*2^(6*n)/(6*n + 3)!); \\ Michel Marcus, Feb 22 2022
CROSSREFS
Cf. A351864 (numerators).
Cf. A002432 (denominators of zeta(2*n)/Pi^(2*n)).
Cf. A013664 (zeta(6)).
Cf. A103345.
Sequence in context: A263889 A133353 A322252 * A119240 A257722 A093247
KEYWORD
nonn,frac
AUTHOR
Roudy El Haddad, Feb 19 2022
STATUS
approved