login
A351810
G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - 4*x)) / (1 - 4*x)^2.
2
1, 1, 9, 69, 565, 5305, 56929, 680685, 8902349, 126121313, 1923133433, 31379181461, 544931376229, 10024917092105, 194602995875985, 3972686705253181, 85035210652191485, 1903471938128641457, 44453001710603619369, 1080789854059236415973, 27304602412815047204501
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k-1) * 4^(k-1) * a(n-k).
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = 1 + x A[x/(1 - 4 x)]/(1 - 4 x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k - 1] 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 19 2022
STATUS
approved