login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283615
Irregular triangle read by rows: T(n,k) is the number of necklaces of n 1's, n -1's, and k 0's such that no two adjacent elements are equal.
1
1, 1, 2, 1, 1, 2, 5, 4, 2, 1, 2, 7, 16, 18, 12, 4, 1, 2, 11, 32, 70, 92, 82, 40, 10, 1, 2, 13, 56, 166, 348, 510, 520, 350, 140, 26, 1, 2, 17, 88, 336, 932, 1948, 2992, 3404, 2756, 1518, 504, 80, 1, 2, 19, 124, 584, 2056, 5524, 11444, 18298, 22428, 20706, 13944, 6468, 1848, 246, 1, 2, 23, 168, 944, 3976, 13120, 34064, 70380, 115516
OFFSET
0,3
COMMENTS
T(n,k) is the number of unique circular arrays (A283614) given equivalence under rotation.
FORMULA
T(n,k) = Sum_{d|gcd(n,k)} phi(d) * A283614(n/d,k/d) / (2*n+k) where phi is Euler's totient function (A000010).
T(n,2*n) = A003239(n).
T(n,2*n-1) = 2*binomial(2*(n-1), n-1).
T(n,n) = A110710(n).
EXAMPLE
Table for n=[0..6], k=[0..12]
0 1 2 3 4 5 6 7 8 9 10 11 12
-----------------------------------------------------------------------------
0 | 1
1 | 1 2 1
2 | 1 2 5 4 2
3 | 1 2 7 16 18 12 4
4 | 1 2 11 32 70 92 82 40 10
5 | 1 2 13 56 166 348 510 520 350 140 26
6 | 1 2 17 88 336 932 1948 2992 3404 2756 1518 504 80
The 13 necklaces for n=5, k=2 are:
[+-+-+-+-0+0-],[+-+-+-+0+-0-],[+-+-+-+0-+0-],[+-+-+-0+-+0-]
[+-+-+0+-+-0-],[+-+-+0-+-+0-],[+-+-+-+-+0-0],[+-+-+-+-0+-0]
[+-+-+-+-0-+0],[+-+-+-+0-+-0],[+-+-+-0+-+-0],[+-+-+-0-+-+0]
[+-+-+0-+-+-0].
PROG
(Maxima)
g(x, y):=2*(x*y+1)/sqrt((1-y)*(1-(2*x+1)^2*y))-1;
A283614(n, k):=coeff(limit(diff(g(x, y), y, n)/n!, y, 0), x, k);
A283615(n, k):=block([s, d],
s:0,
for d in divisors(gcd(n, k)) do
s:s+totient(d)*A283614(n/d, k/d),
return(s/(2*n+k)));
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Stefan Hollos, Apr 11 2017
STATUS
approved