login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(n,k) is the number of necklaces of n 1's, n -1's, and k 0's such that no two adjacent elements are equal.
1

%I #21 Aug 02 2022 09:12:55

%S 1,1,2,1,1,2,5,4,2,1,2,7,16,18,12,4,1,2,11,32,70,92,82,40,10,1,2,13,

%T 56,166,348,510,520,350,140,26,1,2,17,88,336,932,1948,2992,3404,2756,

%U 1518,504,80,1,2,19,124,584,2056,5524,11444,18298,22428,20706,13944,6468,1848,246,1,2,23,168,944,3976,13120,34064,70380,115516

%N Irregular triangle read by rows: T(n,k) is the number of necklaces of n 1's, n -1's, and k 0's such that no two adjacent elements are equal.

%C T(n,k) is the number of unique circular arrays (A283614) given equivalence under rotation.

%F T(n,k) = Sum_{d|gcd(n,k)} phi(d) * A283614(n/d,k/d) / (2*n+k) where phi is Euler's totient function (A000010).

%F T(n,2*n) = A003239(n).

%F T(n,2*n-1) = 2*binomial(2*(n-1), n-1).

%F T(n,n) = A110710(n).

%e Table for n=[0..6], k=[0..12]

%e 0 1 2 3 4 5 6 7 8 9 10 11 12

%e -----------------------------------------------------------------------------

%e 0 | 1

%e 1 | 1 2 1

%e 2 | 1 2 5 4 2

%e 3 | 1 2 7 16 18 12 4

%e 4 | 1 2 11 32 70 92 82 40 10

%e 5 | 1 2 13 56 166 348 510 520 350 140 26

%e 6 | 1 2 17 88 336 932 1948 2992 3404 2756 1518 504 80

%e The 13 necklaces for n=5, k=2 are:

%e [+-+-+-+-0+0-],[+-+-+-+0+-0-],[+-+-+-+0-+0-],[+-+-+-0+-+0-]

%e [+-+-+0+-+-0-],[+-+-+0-+-+0-],[+-+-+-+-+0-0],[+-+-+-+-0+-0]

%e [+-+-+-+-0-+0],[+-+-+-+0-+-0],[+-+-+-0+-+-0],[+-+-+-0-+-+0]

%e [+-+-+0-+-+-0].

%o (Maxima)

%o g(x,y):=2*(x*y+1)/sqrt((1-y)*(1-(2*x+1)^2*y))-1;

%o A283614(n,k):=coeff(limit(diff(g(x,y),y,n)/n!,y,0),x,k);

%o A283615(n,k):=block([s,d],

%o s:0,

%o for d in divisors(gcd(n,k)) do

%o s:s+totient(d)*A283614(n/d,k/d),

%o return(s/(2*n+k)));

%Y Cf. A000010, A003239, A110710, A283614.

%K nonn,tabf

%O 0,3

%A _Stefan Hollos_, Apr 11 2017