login
A283613
T(n,k) = number of linear arrays of n 1's, n -1's, and k 0's such that no two adjacent elements are equal.
1
1, 1, 2, 6, 6, 2, 2, 12, 30, 38, 24, 6, 2, 18, 74, 174, 248, 212, 100, 20, 2, 24, 138, 480, 1092, 1668, 1700, 1110, 420, 70, 2, 30, 222, 1026, 3228, 7188, 11492, 13140, 10500, 5572, 1764, 252, 2, 36, 326, 1882, 7580, 22274, 48852, 80672, 100044, 91840, 60564, 27132, 7392, 924, 2, 42, 450, 3118, 15324, 56040, 156664, 339720, 574716, 757148, 769356, 591444, 332640, 129096, 30888, 3432, 2, 48, 594, 4804, 27888, 122136, 415576, 1118268, 2403588, 4143116, 5719788, 6281856, 5416488, 3586968, 1760616, 603174, 128700, 12870
OFFSET
0,3
FORMULA
G.f.:((x+1)^2*sqrt((1-y)/(1-(2*x+1)^2*y))-x-1)/x.
T(n,0) G.f.: (1+y)/(1-y).
T(n,1) G.f.: (y^2 + 4*y + 1)/(1-y)^2.
T(n,2) G.f.: 2*y*(y^2 + 6*y + 3)/(1-y)^3.
T(n,3) G.f.: 2*y*(2*y^3 + 17*y^2 + 15*y + 1)/(1-y)^4.
T(n,4) G.f.: 4*y^2*(2*y^3 + 23*y^2 + 32*y + 6)/(1-y)^5.
T(n,5) G.f.: 2*y^2*(8*y^4 + 120*y^3 + 243*y^2 + 88*y + 3)/(1-y)^6.
T(n,2*n+1) = binomial(2*n,n).
T(n,2*n) = (n+2)*binomial(2*n,n).
T(n,n) = A110706(n) n > 0.
Sum_{2*n+k = m} T(n,k) = A199697(m).
EXAMPLE
The table starts with columns k=0...11 and rows n=0...5:
| 0 1 2 3 4 5 6 7 8 9 10 11
-----------------------------------------------------------
0 | 1 1
1 | 2 6 6 2
2 | 2 12 30 38 24 6
3 | 2 18 74 174 248 212 100 20
4 | 2 24 138 480 1092 1668 1700 1110 420 70
5 | 2 30 222 1026 3228 7188 11492 13140 10500 5572 1764 252
For n=2, k=4 the 24 arrays are:
[-1,0,-1,0,1,0,1,0] [-1,0,1,0,-1,0,1,0] [-1,0,1,0,1,0,-1,0] [1,0,-1,0,-1,0,1,0]
[1,0,-1,0,1,0,-1,0] [1,0,1,0,-1,0,-1,0] [0,-1,1,0,-1,0,1,0] [0,-1,1,0,1,0,-1,0]
[0,-1,0,-1,1,0,1,0] [0,-1,0,-1,0,1,0,1] [0,-1,0,1,-1,0,1,0] [0,-1,0,1,0,-1,1,0]
[0,-1,0,1,0,-1,0,1] [0,-1,0,1,0,1,-1,0] [0,-1,0,1,0,1,0,-1] [0,1,-1,0,-1,0,1,0]
[0,1,-1,0,1,0,-1,0] [0,1,0,-1,1,0,-1,0] [0,1,0,-1,0,-1,1,0] [0,1,0,-1,0,-1,0,1]
[0,1,0,-1,0,1,-1,0] [0,1,0,-1,0,1,0,-1] [0,1,0,1,-1,0,-1,0] [0,1,0,1,0,-1,0,-1]
MATHEMATICA
nmax=8; Flatten[CoefficientList[Series[CoefficientList[Series[((x + 1)^2*Sqrt[(1 - y)/(1 - (2x + 1)^2*y)] - x - 1)/x, {y, 0, nmax}], y], {x, 0, 2nmax + 1}], x]] (* Indranil Ghosh, Mar 22 2017 *)
CROSSREFS
Sequence in context: A175994 A372985 A340212 * A141327 A248011 A282729
KEYWORD
nonn,tabf
AUTHOR
Stefan Hollos, Mar 11 2017
STATUS
approved