login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180491
Product of remainders of n mod k, for k = 2,3,4,...,n-1.
3
1, 1, 1, 0, 2, 0, 6, 0, 0, 0, 720, 0, 2160, 0, 0, 0, 2419200, 0, 65318400, 0, 0, 0, 754427520000, 0, 0, 0, 0, 0, 32953394073600000, 0, 311409573995520000, 0, 0, 0, 0, 0, 37269497815783833600000, 0, 0, 0, 7890485108998805913600000000, 0
OFFSET
1,5
COMMENTS
a(n) is zero where n is composite and is trivially less than or equal to n! when n is prime or 1.
a(n)=0 iff n is composite. See A180492. - Robert G. Wilson v, Sep 09 2010
FORMULA
a(n) = A080339(n)*A173392(n). - Ridouane Oudra, Nov 01 2024
EXAMPLE
a(7) = (7 mod 2) * (7 mod 3) * (7 mod 4) * (7 mod 5) * (7 mod 6) = 1 * 1 * 3 * 2 * 1 = 6.
MAPLE
a:=proc(n) if n=1 then 1; elif isprime(n)=true then mul(n mod i, i=2..n-1); else 0; fi: end: seq(a(n), n=1..60); # Ridouane Oudra, Nov 01 2024
MATHEMATICA
f[n_] := Times @@ Mod[n, Range[2, n - 1]]; Array[f, 42] (* Robert G. Wilson v, Sep 09 2010 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Carl R. White, Sep 08 2010
STATUS
approved