login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329893
a(n) = Product_{k=0..floor(log_2(n))} (1 + A004718(floor(n/(2^k)))), where A004718 is Per Nørgård's "infinity sequence".
2
1, 2, 0, 6, 0, 0, -6, 24, 0, 0, 0, 0, -18, 0, -48, 120, 0, 0, 0, 0, 0, 0, 0, 0, 18, -72, 0, 0, -192, 48, -360, 720, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 144, -360, 0, 0, 0, 0, 384, -960, 144, 0, -1800, 720, -2880, 5040, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -54, 216
OFFSET
0,2
COMMENTS
The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.
From Mikhail Kurkov, May 22 2019 (comments originally given in A325803): (Start)
Number of positive terms on the interval 2^m <= n < 2^(m+1) for m > 0 equals f(m-1,2,1) (and f(m-1,4,3) for negative) with f(m,g,h) = binomial(m, floor(m/2) + floor((m+g)/4) - floor((m+h)/4)), so total number of nonzero terms equals binomial(m, floor(m/2)) = A001405(m).
Sum_{n=0..2^m-1} a(n) = 3^m, m >= 0.
More generally, if we define a(n,k) = (-1)^(n+1)*a(floor(n/k),k) + n mod k, a(0,k) = 0, so Sum_{n=0..k^m-1} Product_{i=0..floor(log_k(n))} (1 + a(floor(n/(k^i)),k)) = binomial(k+1, 2)^m for any k = 2p, p > 0.
(End) [verification needed]
LINKS
Will Sawin, Voyage into the golden screen (sequence defined by recurrence relation), Answer to question 333031 on Mathoverflow, June 1, 2019.
FORMULA
a(0) = 1; for n > 1, a(n) = (1+A004718(n)) * a(floor(n/2)).
a(n) = Product_{k=0..floor(log_2(n))} (1 + A004718(floor(n/(2^k)))).
a(A325804(n)) = A325803(n).
MATHEMATICA
f[n_?EvenQ] := f[n] = -f[n/2]; f[0] = 0; f[n_] := f[n] = f[(n - 1)/2] + 1; Table[Product[1 + f[Floor[n/(2^k)]], {k, 0, Floor[Log2[n]]}], {n, 0, 120}] (* Michael De Vlieger, Apr 22 2024, after Jean-François Alcover at A004718 *)
PROG
(PARI)
up_to = 65537;
A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, 1+v[n>>1], -v[n/2])); (v); }; \\ After code in A004718.
v004718 = A004718list(up_to);
A004718(n) = if(!n, n, v004718[n]);
A329893(n) = { my(m=1); while(n, m *= 1+A004718(n); n >>= 1); (m); };
(Python)
from math import prod
def A329893(n):
c, s = [0]*(m:=n.bit_length()), bin(n)[2:]
for i in range(m):
if s[i]=='1':
for j in range(m-i):
c[j] = c[j]+1
else:
for j in range(m-i):
c[j] = -c[j]
return prod(1+d for d in c) # Chai Wah Wu, Mar 03 2023
CROSSREFS
Cf. A001405, A004718, A325803 (nonzero terms), A325804 (their positions).
Cf. also A284005, A293233.
Sequence in context: A151336 A346092 A180491 * A047918 A321981 A322481
KEYWORD
sign
AUTHOR
Antti Karttunen (after Mikhail Kurkov's A325803), Dec 10 2019 [verification needed]
STATUS
approved