login
A173113
a(n) = binomial(n + 10, 10) * 5^n.
1
1, 55, 1650, 35750, 625625, 9384375, 125125000, 1519375000, 17092968750, 180425781250, 1804257812500, 17222460937500, 157872558593750, 1396564941406250, 11970556640625000, 99754638671875000
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n>=10) of 6 objects: t, u, v, z, x, y with repetition allowed, containing exactly ten (10) u's.
LINKS
Index entries for linear recurrences with constant coefficients, signature (55,-1375,20625,-206250,1443750,-7218750,25781250,-64453125,107421875,-107421875,48828125).
FORMULA
a(n) = C(n + 10, 10)*5^n, n>=0.
G.f.: 1/(1-5*x)^11. - Vincenzo Librandi, Oct 15 2011
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 184261655/63 - 13107200*log(5/4).
Sum_{n>=0} (-1)^n/a(n) = 503884800*log(6/5) - 11575501585/126. (End)
MATHEMATICA
Table[Binomial[n + 10, 10]*5^n, {n, 0, 20}]
PROG
(Magma) [5^n*Binomial(n+10, 10): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Feb 10 2010
STATUS
approved