login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084902
a(n) = 5^(n-1)*n*(n+1)/2.
5
0, 1, 15, 150, 1250, 9375, 65625, 437500, 2812500, 17578125, 107421875, 644531250, 3808593750, 22216796875, 128173828125, 732421875000, 4150390625000, 23345947265625, 130462646484375, 724792480468750, 4005432128906250
OFFSET
0,3
COMMENTS
Binomial transform of A084901. Fourth binomial transform of heptagonal numbers A000566. Fifth binomial transform of (0,1,5,0,0,0,...).
Number of n-permutations of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly two u's. Example: a(2)=15 because we have uuw, uuv, uuz, uux, uuy, uwu, uvu, uzu, uxu, uyu, wuu, vuu, zuu, xuu, yuu. - Zerinvary Lajos, Dec 30 2007
A shifted version of A081135. - R. J. Mathar, Sep 17 2008
FORMULA
G.f.: x/(1 - 5*x)^3.
E.g.f.: (x/2)*(2 + 5*x)*exp(5*x). - G. C. Greubel, May 17 2021
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3). - Wesley Ivan Hurt, May 17 2021
MATHEMATICA
Table[5^(n-1)n(n+1)/2, {n, 0, 30}] (* or *) LinearRecurrence[{15, -75, 125}, {0, 1, 15}, 30] (* Harvey P. Dale, Sep 18 2018 *)
PROG
(PARI) a(n)=5^(n-1)*n*(n+1)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [5^(n-1)*Binomial(n+1, 2): n in [0..30]]; // G. C. Greubel, May 17 2021
(Sage) [5^(n-1)*binomial(n+1, 2) for n in (0..30)] # G. C. Greubel, May 17 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 10 2003
STATUS
approved