login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021364
Expansion of 1/((1-x)(1-3x)(1-4x)(1-7x)).
1
1, 15, 150, 1270, 9891, 73605, 533800, 3814140, 27018981, 190442395, 1338423450, 9390536610, 65820843271, 461096642385, 3229086629100, 22609268456680, 158287591978761, 1108104188689575, 7757094081310750
OFFSET
0,2
FORMULA
a(n) = 15*a(n-1) - 75*a(n-2) + 145*a(n-3) - 84*a(n-4), with a(0)=1, a(1)=15, a(2)=150, a(3)=1270. [Harvey P. Dale, Jun 09 2011]
a(n) = (7^(n+3) - 2*4^(n+4) + 3^(n+5) -2)/72. [Yahia Kahloune, Jun 26 2013]
a(0)=1, a(1)=15; for n>1, a(n) = 11*a(n-1) -28*a(n-2) +(3^n-1)/2. - Vincenzo Librandi, Jul 09 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 3 x) (1 - 4 x) (1 - 7 x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{15, -75, 145, -84}, {1, 15, 150, 1270}, 20] (* Harvey P. Dale, Jun 09 2011 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-3*x)*(1-4*x)*(1-7*x)))); /* or */ I:=[1, 15, 150, 1270]; [n le 4 select I[n] else 15*Self(n-1)-75*Self(n-2)+145*Self(n-3)-84*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 09 2013
CROSSREFS
Sequence in context: A085375 A081135 A084902 * A352160 A323298 A206366
KEYWORD
nonn,easy
AUTHOR
STATUS
approved