login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085375
a(n) = binomial(2*n+1, n+1)*binomial(n+4, 4).
1
1, 15, 150, 1225, 8820, 58212, 360360, 2123550, 12033450, 66050270, 353068716, 1845586470, 9464546000, 47738754000, 237329805600, 1164893795820, 5653161067950, 27157342385250, 129275302348500, 610315506350550, 2859764086899720, 13308425945529000
OFFSET
0,2
LINKS
FORMULA
a(n+1) = a(n)*2*(n+5)*(2*n+3)/((n+1)*(n+2)). - Chai Wah Wu, Jan 26 2016
G.f.: (1 - 3*x + 6*x^2 - 5*x^3) / (1 - 4*x)^(9/2). - Ilya Gutkovskiy, Nov 17 2021
MAPLE
seq(binomial(2*n+1, n+1)*binomial(n+4, 4), n=0..20); # Zerinvary Lajos, Jan 18 2007
MATHEMATICA
Table[Binomial[2*n + 1, n + 1] * Binomial[n + 4, 4], {n, 0, 30}]
PROG
(Python)
from __future__ import division
A085375_list, b = [], 1
for n in range(501):
A085375_list.append(b)
b = b*2*(n+5)*(2*n+3)//((n+1)*(n+2)) # Chai Wah Wu, Jan 26 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jun 26 2003
STATUS
approved