login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222465
a(n) = 4*n^2 + 3.
4
3, 7, 19, 39, 67, 103, 147, 199, 259, 327, 403, 487, 579, 679, 787, 903, 1027, 1159, 1299, 1447, 1603, 1767, 1939, 2119, 2307, 2503, 2707, 2919, 3139, 3367, 3603, 3847, 4099, 4359, 4627, 4903, 5187, 5479, 5779, 6087, 6403, 6727, 7059, 7399
OFFSET
0,1
COMMENTS
2/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the clockwise Pappus chain of the arbelos with semicircle radii r, r1 = 2r/3, r2 = r/3. See the MathWorld link for Pappus chain (there only the counterclockwise chain is shown). The counterclockwise chain companion has circle radii R(n)/r = 2/A114949(n), n>=0.
Binomial transform of (3, 4, 8, 0, 0, 0, 0, 0, 0, 0, ...). - Philippe Deléham, Mar 07 2013
LINKS
Eric Weisstein's World of Mathematics, Pappus chain
FORMULA
a(n) = 4*n^2 + 3, n >= 0.
O.g.f.: (3 - 2*x + 7*x^2)/(1-x)^3.
a(n) = A016742(n) + 3. - Omar E. Pol, Mar 02 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0) = 3, a(1) = 7, a(2) = 19. - Philippe Deléham, Mar 05 2013
From Amiram Eldar, Jul 11 2020: (Start)
Sum_{n>=0} 1/a(n) = 1/6 + sqrt(3)*Pi*coth(sqrt(3)*Pi/2)/12.
Sum_{n>=0} (-1)^n/a(n) = 1/6 + sqrt(3)*Pi*cosech(sqrt(3)*Pi/2)/12. (End)
EXAMPLE
The dimensionless radii R(n)/r of the clockwise Pappus chain for the arbelos (r,r1,r2=r-r1) = r*(1,2/3,1/3) are [2/3, 2/7, 2/19, 2/39, 2/67, 2/103, 2/147, 2/199 ,...], for n >= 0. The circle for n=0 has radius r1=2/3 and center (2/3,0) with the origin at the left tip of the arbelos. The n=1 circle coincides with the one of the counterclockwise companion chain.
MAPLE
A222465(n):=n->4*n^2 + 3; seq(A222465(n), n=0..50); # Wesley Ivan Hurt, Feb 06 2014
MATHEMATICA
Table[4 n^2 + 3, {n, 0, 50}] (* Wesley Ivan Hurt, Feb 06 2014 *)
Array[4 #^2 + 3 &, 44, 0] (* Luiz Roberto Meier, Jan 22 2015 *)
PROG
(PARI) a(n)=4*n^2+3 \\ Charles R Greathouse IV, Aug 20 2013
CROSSREFS
Sequence in context: A127928 A298125 A047025 * A239416 A281866 A173114
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 01 2013
STATUS
approved