login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292775
a(n) = smallest prime q such that Sum_{primes p <= q} 1/sqrt(p) >= n.
2
3, 7, 19, 41, 73, 113, 191, 271, 383, 509, 661, 859, 1069, 1307, 1601, 1931, 2287, 2687, 3119, 3583, 4093, 4657, 5279, 5881, 6607, 7351, 8167, 9001, 9851, 10837, 11867, 12899, 13967, 15161, 16361, 17627, 19031, 20389, 21821, 23297, 24917, 26557, 28279, 30059, 31891, 33647, 35617, 37607, 39779
OFFSET
1,1
LINKS
Benoit Cloitre, Asymptotics for A292775
FORMULA
a(n) ~ prime(n)^2. - Benoit Cloitre, Oct 01 2017 [See link]
MAPLE
Digits:=50;
s0:=0; k:=1; lisi:=[]; lisP:=[];
for i from 1 to 10000 do p:=ithprime(i);
s0:=s0+evalf(1/sqrt(p));
if s0 >= k then k:=k+1; lisi:=[op(lisi), i]; lisP:=[op(lisP), p]; fi;
od:
lisi; # A292774
lisP; # A292775
MATHEMATICA
f[n_]:=Block[{k=0, s=0}, While[s<n, k++; s=N[s+1/Sqrt[Prime[k]], 50]]; k]; Table[Prime[f[n]], {n, 1, 50}] (* Vincenzo Librandi, Oct 01 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 30 2017
STATUS
approved