We have to consider approximations of the partial sums of the Prime Zeta Function

$$
P(s)=\sum_{p} \frac{1}{p^{s}}
$$

Under RH we should have using the logarithm integral

$$
\sum_{p \leq x} \frac{1}{p^{1 / 2}}=L_{i}\left(x^{1 / 2}\right)+O\left(x^{\varepsilon}\right)
$$

So that your sequence A292775 should satisfy

$$
L_{i}\left(a_{n}^{1 / 2}\right) \sim n
$$

Since

$$
L_{i}^{-1}(y)=y\left(\log y+\log \log y-1+O\left(\frac{\log \log y}{\log y}\right)\right)
$$

we must have

$$
A 292775(n) \sim n^{2}(\log n+\log \log n-1)^{2}
$$

and nothing really better can be found. A simpler one is

$$
A 292775(n) \sim p(n)^{2}
$$

where $p(n)$ is the n -th prime.

