Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 13 2017 12:43:27
%S 3,7,19,41,73,113,191,271,383,509,661,859,1069,1307,1601,1931,2287,
%T 2687,3119,3583,4093,4657,5279,5881,6607,7351,8167,9001,9851,10837,
%U 11867,12899,13967,15161,16361,17627,19031,20389,21821,23297,24917,26557,28279,30059,31891,33647,35617,37607,39779
%N a(n) = smallest prime q such that Sum_{primes p <= q} 1/sqrt(p) >= n.
%H Vincenzo Librandi, <a href="/A292775/b292775.txt">Table of n, a(n) for n = 1..500</a>
%H Benoit Cloitre, <a href="/A292775/a292775.pdf">Asymptotics for A292775</a>
%F a(n) ~ prime(n)^2. - _Benoit Cloitre_, Oct 01 2017 [See link]
%p Digits:=50;
%p s0:=0; k:=1; lisi:=[]; lisP:=[];
%p for i from 1 to 10000 do p:=ithprime(i);
%p s0:=s0+evalf(1/sqrt(p));
%p if s0 >= k then k:=k+1; lisi:=[op(lisi),i]; lisP:=[op(lisP),p]; fi;
%p od:
%p lisi; # A292774
%p lisP; # A292775
%t f[n_]:=Block[{k=0, s=0}, While[s<n, k++; s=N[s+1/Sqrt[Prime[k]], 50]]; k]; Table[Prime[f[n]], {n, 1, 50}] (* _Vincenzo Librandi_, Oct 01 2017 *)
%Y Cf. A292774; A019529, A054040.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Sep 30 2017