login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292774
a(n) = smallest m such that Sum_{i=1..m} 1/sqrt(prime(i)) >= n.
2
2, 4, 8, 13, 21, 30, 43, 58, 76, 97, 121, 149, 180, 214, 252, 294, 340, 390, 444, 502, 564, 630, 700, 775, 854, 937, 1025, 1118, 1215, 1317, 1423, 1535, 1650, 1771, 1897, 2027, 2162, 2303, 2448, 2598, 2753, 2914, 3079, 3250, 3426, 3607, 3793, 3984, 4181, 4383, 4591, 4803, 5022, 5245, 5474, 5709
OFFSET
1,1
LINKS
FORMULA
a(n) ~ (n^2*log(n))/2. - Benoit Cloitre, Oct 01 2017 [This follows from the asymptotics for A292775]
MAPLE
Digits:=50;
s0:=0; k:=1; lisi:=[]; lisP:=[];
for i from 1 to 10000 do p:=ithprime(i);
s0:=s0+evalf(1/sqrt(p));
if s0 >= k then k:=k+1; lisi:=[op(lisi), i]; lisP:=[op(lisP), p]; fi;
od:
lisi; # A292774
lisP; # A292775
MATHEMATICA
f[n_]:=Block[{k=0, s=0}, While[s<n, k++; s=N[s+1/Sqrt[Prime[k]], 50]]; k]; Table[f[n], {n, 1, 60}] (* Vincenzo Librandi, Oct 01 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 30 2017
STATUS
approved