login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097074
Expansion of (1-x+2*x^2)/((1-x)*(1-x-2*x^2)).
6
1, 1, 5, 9, 21, 41, 85, 169, 341, 681, 1365, 2729, 5461, 10921, 21845, 43689, 87381, 174761, 349525, 699049, 1398101, 2796201, 5592405, 11184809, 22369621, 44739241, 89478485, 178956969, 357913941, 715827881, 1431655765, 2863311529
OFFSET
0,3
COMMENTS
Partial sums of A097073.
This is the sequence A(1,1;1,2;2) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. [Wolfdieter Lang, Oct 18 2010]
FORMULA
a(n) = 2*A001045(n+1) - 1.
a(n) = (2^(n+2) + 2*(-1)^n - 3)/3.
From Wolfdieter Lang, Oct 18 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=1, a(1)=1.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), a(0)=1=a(1), a(2)=5. Observed by G. Detlefs. See the W. Lang link. (End)
a(n) = 3*a(n-1) - 2*a(n-2) + 4*(-1)^n. - Gary Detlefs, Dec 19 2010
a(n) = A000975(n+1) - A000975(n) + 2*A000975(n-1). - R. J. Mathar, Feb 27 2019
E.g.f.: (1/3)*(2*exp(-x) - 3*exp(x) + 4*exp(2*x)). - G. C. Greubel, Aug 18 2022
MATHEMATICA
CoefficientList[Series[(1-x+2x^2)/((1-x)(1-x-2x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 1, -2}, {1, 1, 5}, 40] (* Harvey P. Dale, Apr 09 2018 *)
PROG
(Magma) [(2^(n+2) +2*(-1)^n -3)/3: n in [0..40]]; // G. C. Greubel, Aug 18 2022
(SageMath) [(2^(n+2) +2*(-1)^n -3)/3 for n in (0..40)] # G. C. Greubel, Aug 18 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 22 2004
EXTENSIONS
Correction of the homogeneous recurrence and index link added by Wolfdieter Lang, Nov 16 2013
STATUS
approved