login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173200 Solutions y of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0,1,2, ... (solutions x are given by A053755). 2
0, 11, 70, 225, 524, 1015, 1746, 2765, 4120, 5859, 8030, 10681, 13860, 17615, 21994, 27045, 32816, 39355, 46710, 54929, 64060, 74151, 85250, 97405, 110664, 125075, 140686, 157545, 175700, 195199, 216090, 238421, 262240, 287595, 314534, 343105 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
For many values of k for the equation y^2 = x^3 + k, all the solutions are known. For example, we have solutions for k=-2: (x,y) = (3,-5) and (3,5). A complete resolution for all integers k is unknown. Theorem: Let k be < -1, free of square factors, with k == 2 or 3 (mod 4). Suppose that the number of classes h(Q(sqrt(k))) is not divisible by 3. Then the equation y^2 = x^3 + k admits integer solutions if and only if k = 1 - 3a^2 or 1 - 3a^2 where a is integer. In this case, the solutions are x = a^2 - k, y = a(a^2 + 3k) or -a(a^2 + 3k) (the first reference gives the proof of this theorem). With k = -1 - 3a^2, we obtain the solutions x = 4a^2 + 1, y = a(8a^2 + 3) or -a(8a^2 + 3). For the case k = 1 - 3a^2, we obtain the solution x = 4a^2 - 1 given by the sequence A000466.
REFERENCES
T. Apostol, Introduction to Analytic Number Theory, Springer, 1976
D. Duverney, Théorie des nombres (2e edition), Dunod, 2007, p.151
LINKS
W. J. Ellison, F. Ellison, J. Pesek, C. E. Stall & D. S. Stall, The diophantine equation y^2 + k = x^3, J. Number Theory 4 (1972), 107-117.
John J. O'Connor and Edmund F. Robertson, Louis Joel Mordell
Helmut Richter, Solutions of Mordell's equation y^2 = x^3 + k (solutions for 0<k<1008)
Eric Weisstein's World of Mathematics, Mordell Curve
David J. Wright, Mordell's Equation
FORMULA
y = a*(8*a^2 + 3).
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 27*n - 11.
G.f.: x^2*(11 + 26*x + 11*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
EXAMPLE
With a=3, x =37 and y = 225, and then 225^2 = 37^2 - 28.
MAPLE
for a from 0 to 150 do : z := evalf(a*(8*a^2 + 3)) : print (z) :od :
MATHEMATICA
CoefficientList[Series[x*(11+26*x+11*x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 02 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 11, 70, 225}, 40] (* Harvey P. Dale, Dec 21 2016 *)
PROG
(Magma) I:=[0, 11, 70, 225]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
(Python) for n in range(1, 20): print(8*n**3 - 24*n**2 + 27*n - 11, end=', ') # Stefano Spezia, Dec 05 2018
CROSSREFS
Sequence in context: A236320 A211050 A295074 * A071746 A205812 A162568
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Feb 12 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 11:23 EDT 2024. Contains 371967 sequences. (Running on oeis4.)