OFFSET
2,2
COMMENTS
For each row, k lies in the range 0..floor(n/2). The upper end of the range is the upper irredundance number of the graph.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..991
Eric Weisstein's World of Mathematics, Cycle Graph
Eric Weisstein's World of Mathematics, Irredundant Set
FORMULA
T(n,k) = 0 for k < ceiling(n/3).
Sum_{k=0..floor(n/2)} T(n,k) = A286954(n). - Eric W. Weisstein, Jun 11 2021
EXAMPLE
Triangle begins:
0, 2;
0, 3;
0, 0, 6;
0, 0, 10;
0, 0, 9 2;
0, 0, 0, 14;
0, 0, 0, 8, 6;
0, 0, 0, 3, 27;
0, 0, 0, 0, 60, 2;
0, 0, 0, 0, 33, 33;
0, 0, 0, 0, 9, 84, 6;
0, 0, 0, 0, 0, 91, 52;
0, 0, 0, 0, 0, 14, 196, 2;
...
As polynomials these are 2*x; 3*x; 6*x^2; 10*x^2; 9*x^2 + 2*x^3; etc.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Aug 16 2017
STATUS
approved