login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333364
Indices of primes p whose order of primeness A078442(p) is prime.
2
2, 3, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
OFFSET
1,1
COMMENTS
All terms are prime.
LINKS
N. Fernandez, An order of primeness [cached copy, included with permission of the author]
FORMULA
{ p in primes : A049076(p) is prime }.
a(n) = pi(A333353(n)), with pi = A000720.
EXAMPLE
11 is a term: prime(11) = 31 -> 11 -> 5 -> 3 -> 2 -> 1, five (a prime number of) steps "->" = pi = A000720.
MAPLE
b:= proc(n) option remember;
`if`(isprime(n), 1+b(numtheory[pi](n)), 0)
end:
a:= proc(n) option remember; local p;
p:= `if`(n=1, 1, a(n-1));
do p:= nextprime(p);
if isprime(b(p)+1) then break fi
od; p
end:
seq(a(n), n=1..62);
MATHEMATICA
b[n_] := b[n] = If[PrimeQ[n], 1 + b[PrimePi[n]], 0];
a[n_] := a[n] = Module[{p}, p = If[n == 1, 1, a[n - 1]];
While[True, p = NextPrime[p]; If[PrimeQ[b[p] + 1], Break[]]]; p];
Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Sep 14 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 16 2020
STATUS
approved